forked from pytorch/torchtitan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdebug_model.toml
62 lines (52 loc) · 1.49 KB
/
debug_model.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# torchtitan Config.toml
[job]
dump_folder = "./outputs"
description = "Llama 3 debug training"
use_for_integration_test = true
[profiling]
enable_profiling = true
save_traces_folder = "profile_trace"
profile_freq = 10
enable_memory_snapshot = false
save_memory_snapshot_folder = "memory_snapshot"
[metrics]
log_freq = 1
enable_color_printing = true
enable_tensorboard = true
save_tb_folder = "tb"
[model]
name = "llama3"
flavor = "debugmodel"
norm_type = "rmsnorm" # layernorm / np_layernorm / rmsnorm / fused_rmsnorm
# test tokenizer.model, for debug purpose only
tokenizer_path = "./test/assets/test_tiktoken.model"
[optimizer]
name = "AdamW"
lr = 8e-4
[training]
batch_size = 8
seq_len = 2048
warmup_steps = 2 # lr scheduler warm up, normally 20% of the train steps
max_norm = 1.0 # grad norm clipping
steps = 10
data_parallel_replicate_degree = 1
data_parallel_shard_degree = -1
tensor_parallel_degree = 1
compile = false
dataset = "c4_test" # supported datasets: c4_test (2K), c4 (177M)
[experimental]
pipeline_parallel_degree = 1
enable_async_tensor_parallel = false
[checkpoint]
enable_checkpoint = false
folder = "checkpoint"
interval_type = "steps"
interval = 5
model_weights_only = false
export_dtype = "float32"
async_mode = "disabled" # ["disabled", "async", "async_with_pinned_mem"]
[activation_checkpoint]
mode = 'selective' # ['none', 'selective', 'full']
selective_ac_option = '2' # 'int' = ac every positive int layer or 'op', ac based on ops policy
[float8]
enable_float8_linear = false