This repository has been archived by the owner on Mar 31, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimeSeriesVisualisation.py
382 lines (327 loc) · 12.2 KB
/
timeSeriesVisualisation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 24 10:42:29 2020
@author: Luciano Melodia
"""
import os
import numpy as np
import random
import timeSeriesConfig as cfg
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import matplotlib.cm as cm
import matplotlib
import chart_studio.plotly as py
import plotly.graph_objs as go
import plotly
from matplotlib.collections import LineCollection
from matplotlib import colors as mcolors
from scipy.interpolate import make_interp_spline, BSpline
from mpl_toolkits.mplot3d import Axes3D
from scipy import stats
from cycler import cycler
from gtda.diagrams import HeatKernel
from gtda.plotting import plot_heatmap, plot_betti_surfaces, plot_betti_curves
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import to_tree
matplotlib.use("WebAgg")
def export_cmap_to_cpt(
cmap,
vmin: float = 0,
vmax: float = 1,
N: int = 255,
filename: str = "test.cpt",
**kwargs
):
"""
**Exports a custom matplotlib color map to files.**
Generates a color map for matplotlib at a desired normalized interval of choice. The map is not returned, but
saved as a text file. The default name for this file is `test.cpt`. This file then contains the information
for the color maps in matplotlib and can then be loaded.
+ param **cmap**: Name of the color map, type `str`.
+ param **vmin**: lower limit of normalization, type `float`.
+ param **vmax**: upper limit of normalization, type `float`.
+ param **N**: highest color value in `RGB`, type `int`.
+ param **filename**: name of the color map file, type `str`.
+ param **kwargs**: additional arguments like `B`, `F` or `N` for color definition, type `str`.
"""
# Create string for upper, lower colors.
b = np.array(kwargs.get("B", cmap(0.0)))
f = np.array(kwargs.get("F", cmap(1.0)))
na = np.array(kwargs.get("N", (0, 0, 0))).astype(float)
ext = (np.c_[b[:3], f[:3], na[:3]].T * 255).astype(int)
extstr = "B {:3d} {:3d} {:3d}\nF {:3d} {:3d} {:3d}\nN {:3d} {:3d} {:3d}"
ex = extstr.format(*list(ext.flatten()))
# Create colormap.
cols = (cmap(np.linspace(0.0, 1.0, N))[:, :3] * 255).astype(int)
vals = np.linspace(vmin, vmax, N)
arr = np.c_[vals[:-1], cols[:-1], vals[1:], cols[1:]]
# Save to file.
fmt = "%e %3d %3d %3d %e %3d %3d %3d"
np.savetxt(
filename, arr, fmt=fmt, header="# COLOR_MODEL = RGB", footer=ex, comments=""
)
def plot_embedding3D(path: str):
"""
**Plots 3-1 embeddings iteratively within a directory.
Plots a set of embeddings always with three dimensions and a time delay of 1.
This can be changed arbitrarily, according to the estimated parameters.
+ param **path**: Path to the directory containing `.npy` files, type `.npy`.
"""
files = os.listdir(path)
for i in files:
if "embedded_3-1" in i:
data = np.load(path + i)
fig = plt.figure()
ax = plt.axes(projection="3d")
zdata = data.transpose()[0]
xdata = data.transpose()[1]
ydata = data.transpose()[2]
ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap="Blues")
plt.show()
def mean_heatkernel2D(
directory: str,
homgroup: int,
limit: int = 0,
store: bool = False,
plot: bool = False,
filename: str = "figure",
filetype: str = "svg",
colormap: str = "Reds",
):
"""
**Calculates a mean heat core over a large collection of files in a directory.**
Calculates a mean heat core map from a folder full of `.npy` files with heat maps.
This can optionally be saved or displayed as a plot in the browser.
+ param **directory**: directory of `.npy` files for line plots, type `str`.
+ param **homgroup**: specify which homology group to plot, type `int`.
+ param **limit**: limit the number of files to display, type `int`.
+ param **store**: whether to store the file or not, type `bool`.
+ param **filename**: name of the file to be saved, type `str`.
+ param **colormap**: plot color scales, type `str`.
+ return **fig**: figure object, type `plotly.graph_objects.Figure`.
"""
files = []
count = 0
for dirpath, _, filenames in os.walk(directory):
for f in filenames:
file = os.path.abspath(os.path.join(dirpath, f))
try:
data = np.load(file)
files.append(data[0][homgroup])
if limit > 0:
count += 1
if count == limit:
count = 0
break
except IndexError:
pass
data = np.mean(files, axis=0)
fig = plot_heatmap(data, colorscale=colormap)
if plot:
fig.show()
if store:
plotly.io.write_image(fig, filename, format=filetype)
return fig
def massive_surface_plot3D(
directory: str,
homgroup: int,
title: str = "Default",
limit: int = 45000,
store: bool = False,
plotting: bool = False,
filename: str = "figure",
filetype: str = "svg",
colormap: str = "Reds",
):
"""
**Calculates a solid surface from curves.**
Calculates a surface from a directory full of `npy` files of curves (intended for Betti curves
from persistence diagrams). For the `x` and `y` coordinates, the corresponding indices of the Betti
curves themselves and the filtration index are selected. The value of the function is then visible
on the 'z' axis. Optionally, these can be displayed as a graph in the browser or also saved.
Example:
``Python
massive_surface_plot3D(
"/home/lume/documents/siemens_samples/power_plant_silhouette/",
homgroup=1,
store=True,
plotting=True,
limit=1000
)
```
+ param **directory**: directory of `.npy` files for line plots, type `str`.
+ param **homgroup**: determines which homology group to plot, type `int`.
+ param **limit**: limit on the number of files to display, type `int`.
+ param **plotting**: whether the file should be plotted or not, type `bool`.
+ param **store**: whether the file should be stored or not, type `bool`.
+ param **filename**: name of the file to be saved, type `str`.
+ param **colormap**: plot color scales, type `str`.
+ return **fig**: figure object, type `plotly.graph_objects.Figure`.
"""
files = []
count = 0
for dirpath, _, filenames in os.walk(directory):
for f in filenames:
file = os.path.abspath(os.path.join(dirpath, f))
try:
data = np.load(file)[0][homgroup]
files.append(data)
if limit > 0:
count += 1
if count == limit:
count = 0
break
except IndexError:
pass
files = np.array(files)
x = np.linspace(0, 1, files.shape[0])
fig = go.Figure(
data=[go.Surface(z=files, x=x, y=x, colorscale=colormap, reversescale=True)]
)
camera = dict(
up=dict(x=0, y=0, z=1),
center=dict(x=0, y=0, z=0),
eye=dict(x=1.5, y=1.5, z=0.25),
)
fig.update_layout(
title=title,
autosize=False,
width=1000,
height=1000,
margin=dict(l=65, r=50, b=90, t=90),
scene_camera=camera,
)
if plotting:
fig.show()
if store:
fig.write_image(filename + "." + filetype)
return fig
def massive_line_plot3D(
directory: str,
homgroup: int,
resolution: int = 300,
k: int = 3,
limit: int = 0,
elev: float = 20,
azim: int = 135,
KKS: str = "LBB",
fignum: int = 0,
plot: bool = False,
):
"""
**Function creates a massive line chart from a directory of `.npy` files that contain the data.**
This function creates a line graph from a set of `.npy` files. The line graph will be three dimensional
and each line will be plotted along the `z` axis, while the other two axes will represent the plot
or time step. It is assumed that the `.npy` file stores a one-dimensional array. The method iterates over
to populate a directory of `.npy` files, each of which contains a one-dimensional time series.
Examples:
`python
massive_line_plot3D(
directory="/home/lume/documents/siemens_samples/kraftwerk_betticurve/", homgroup=0
)
```
Example of multiple plots of Betti curves / persistence silhouettes:
``python
number = 0
for i in cfg.pptcat:
massive_line_plot3D(
directory="/home/lume/documents/siemens_kraftwerk_samples/kraftwerk_bettikurve/",
homgroup=0,
KKS=i,
fignum=count,
)
count += 1
plt.show()
plt.close()
```
+ param **directory**: directory of `.npy` files for line plots, type `str`.
+ param **homgroup**: specify which homology group to plot, type `int`.
+ param **resolution**: number of points added between min and max for interpolation, type `int`.
+ param **k**: B-spline degree, type `int`.
+ param **limit**: limit of the number of files to be displayed, type `int`.
+ param **elev**: angle of horizontal shift, type `float`.
+ param **azim**: degree of counterclockwise rotation, type `int`.
+ param **plot**: whether to plot or not, type `bool`.
+ param **fignum**: figure number for multiple figures, type `int`.
+ return **True**: True if plot was successful, type `bool`.
"""
files = []
count = 0
fig = plt.figure(fignum)
ax = fig.add_subplot(111, projection="3d")
for dirpath, _, filenames in os.walk(directory):
for f in filenames:
if KKS in f:
file = os.path.abspath(os.path.join(dirpath, f))
try:
data = np.load(file)[0][homgroup]
files.append(data)
if limit > 0:
count += 1
if count == limit:
count = 0
break
except IndexError:
pass
else:
pass
if not files:
return False
# files = sorted(files, key=sum)
for f in files:
x_array = np.full(len(f), count, dtype=int)
y_array = np.arange(start=0, stop=len(f), step=1)
evenly_spaced_interval = np.linspace(0, 1, len(files))
if "betticurve" in directory:
interval = evenly_spaced_interval[count]
color1 = cm.RdGy(interval)
color2 = cm.RdBu(interval)
else:
color1 = cm.RdGy(evenly_spaced_interval[count])
color2 = cm.RdBu(evenly_spaced_interval[count])
ax.plot(x_array, y_array, f, "x", markersize=2, color=color1)
ax.plot(x_array, y_array, f, color=color2)
ax.set_title(KKS + "_homgroup_" + str(homgroup), y=1.08)
ax.view_init(elev=elev, azim=azim)
ax.ticklabel_format(style="sci", useOffset=True)
ax.w_xaxis.set_pane_color((1, 0.921, 0.803, 0.1))
ax.w_yaxis.set_pane_color((1, 0.921, 0.803, 0.1))
ax.w_zaxis.set_pane_color((1, 0.921, 0.803, 0.1))
ax.w_xaxis.set_tick_params(
labelsize=12,
which="major",
pad=-5,
colors="black",
labelrotation=23,
direction="in",
)
ax.w_yaxis.set_tick_params(
labelsize=12,
which="major",
pad=-5,
colors="black",
labelrotation=-23,
direction="in",
)
ax.w_zaxis.set_tick_params(
labelsize=12, which="major", pad=4, colors="black", direction="in"
)
formatter = ticker.ScalarFormatter(useMathText=False)
formatter.set_scientific(False)
formatter.set_powerlimits((-2, 3))
ax.w_xaxis.set_major_formatter(formatter)
# ax.w_yaxis.set_major_formatter(formatter)
# ax.w_zaxis.set_major_formatter(formatter)
# ax.set_yticklabels([])
# ax.set_xticklabels([])
# ax.set_zticklabels([])
count += 1
if limit > 0:
if count == limit:
if plot:
plt.show()
return True
if plot:
plt.show()
return True