-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy patheval.py
135 lines (109 loc) · 4 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
def total_accuracy(self, y_pred, y_true):
return np.sum(np.argmax(y_pred, axis=1).flatten() == y_true) / len(y_true)
def classwise_accuracy(self, y_pred, y_true):
cls_acc = np.zeros(self.num_class)
y_pred = np.argmax(y_pred, axis=1).flatten()
for i in range(self.num_class):
class_num = np.sum(y_true==i)
if class_num==0:
cls_acc[i] = 0
else:
cls_acc[i] = np.sum(y_pred[y_true==i]==i)/class_num
return cls_acc
def get_labels_start_end_time(frame_wise_labels, bg_class=[]):
labels = []
starts = []
ends = []
last_label = frame_wise_labels[0]
if frame_wise_labels[0] not in bg_class:
labels.append(frame_wise_labels[0])
starts.append(0)
for i in range(len(frame_wise_labels)):
if frame_wise_labels[i] != last_label:
if frame_wise_labels[i] not in bg_class:
labels.append(frame_wise_labels[i])
starts.append(i)
if last_label not in bg_class:
ends.append(i)
last_label = frame_wise_labels[i]
if last_label not in bg_class:
ends.append(i + 1)
return labels, starts, ends
def levenstein(p, y, norm=False):
m_row = len(p)
n_col = len(y)
D = np.zeros([m_row+1, n_col+1], np.float)
for i in range(m_row+1):
D[i, 0] = i
for i in range(n_col+1):
D[0, i] = i
for j in range(1, n_col+1):
for i in range(1, m_row+1):
if y[j-1] == p[i-1]:
D[i, j] = D[i-1, j-1]
else:
D[i, j] = min(D[i-1, j] + 1,
D[i, j-1] + 1,
D[i-1, j-1] + 1)
if norm:
score = (1 - D[-1, -1]/max(m_row, n_col)) * 100
else:
score = D[-1, -1]
return score
def edit_score(recognized, ground_truth, norm=True, bg_class=[]):
P, _, _ = get_labels_start_end_time(recognized, bg_class)
Y, _, _ = get_labels_start_end_time(ground_truth, bg_class)
return levenstein(P, Y, norm)
def f_score(recognized, ground_truth, overlap, bg_class=[]):
p_label, p_start, p_end = get_labels_start_end_time(recognized, bg_class)
y_label, y_start, y_end = get_labels_start_end_time(ground_truth, bg_class)
tp = 0
fp = 0
IoU_list = []
hits = np.zeros(len(y_label))
for j in range(len(p_label)):
intersection = np.minimum(p_end[j], y_end) - np.maximum(p_start[j], y_start)
union = np.maximum(p_end[j], y_end) - np.minimum(p_start[j], y_start)
IoU = (1.0*intersection / union)*([p_label[j] == y_label[x] for x in range(len(y_label))])
# Get the best scoring segment
idx = np.array(IoU).argmax()
IoU_list.append(IoU[idx])
if IoU[idx] >= overlap and not hits[idx]:
tp += 1
hits[idx] = 1
else:
fp += 1
fn = len(y_label) - sum(hits)
return float(tp), float(fp), float(fn), np.mean(IoU_list)
def get_all_metrics(y_pred,y_true,bg_class=[]):
metrics = []
overlap = [.1, .25, .5]
tp, fp, fn = np.zeros(3), np.zeros(3), np.zeros(3)
correct = np.sum(y_pred==y_true)
for s in range(len(overlap)):
tp1, fp1, fn1, mean_IoU = f_score(y_pred, y_true, overlap[s], bg_class)
tp[s] += tp1
fp[s] += fp1
fn[s] += fn1
Acc = 100*float(correct)/len(y_pred)
metrics.append(Acc)
edit = edit_score(y_pred, y_true, True, bg_class)
metrics.append(edit)
# print(f"Acc: {Acc} edit:{edit}", end=" ")
for s in range(len(overlap)):
precision = tp[s] / float(tp[s]+fp[s])
recall = tp[s] / float(tp[s]+fn[s])
f1 = 2.0 * (precision*recall) / (precision+recall)
f1 = np.nan_to_num(f1)*100
metrics.append(f1)
# print('F1@%0.2f: %.4f' % (overlap[s], f1), end=" ")
return metrics
if __name__ == "__main__":
pred = np.zeros(1000)
true = np.zeros(1000)
true[10:100] = 1
true[105:125] = 1
true[205:225] = 1
true[305:335] = 1
print(get_all_metrics(pred,true))