forked from nki-radiology/PAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
37 lines (26 loc) · 1.12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import argparse
from network import RegistrationNetwork
from network import Loss
from network import Penalty
from keras.optimizers import Adam
parser = argparse.ArgumentParser(description='Train PAM')
parser.add_argument('--batch_size', default=2, type=int, help='Batch size (can be small thanks to group normalization).')
parser.add_argument('--image_size', default=(192, 192, 160), type=tuple, help='Size of the input image.')
args = parser.parse_args()
raise NotImplementedError(
'You need to implement a data generator for the training! ' +\
'More info in data.py'
)
training_generator = None
holdout_generator = None
network = RegistrationNetwork(args.image_size).build('pam')
for smooth, epochs in [[9, 100], [6, 50], [3, 25], [1, 12]]:
loss = Loss(args.image_size, smooth=smooth)
penalty = Penalty(args.image_size, args.batch_size)
network.compile(
Adam(3e-4),
loss = [penalty.affine, loss.cc, penalty.elastic, loss.cc],
loss_weights = [.1, 1., .1, 1.]
)
network.fit_generator(training_generator, validation_data=holdout_generator, epochs=epochs)
network.save(r'models/pam_network.h5')