解法1:比较naive的实现就是每次push元素之前都要把输出栈stk2的元素重新搬回输入栈stk1,然后再栈后push。pop的时候,把所有元素都搬入到输出栈,从栈尾pop(peek跟pop类似,只是不会把尾部元素pop掉而已)。时间复杂度为O(N)
解法2:观察到解法1中有大量不必要的搬来搬去,每个元素只需要入栈stk1, stk2各一次就够了。当需要pop的时候,如果stk2里面有元素,说明之前从stk1种搬来的元素还没pop完,直接O(1) pop,如果为空了,需要一次O(N)操作把所有输入栈里的元素用movInToOut从输入栈搬到输出栈。虽然是O(N)但是考虑到搬一次可以够后面N次pop O(1)时间用,所以平均pop时间还是O(1)。push就更简单直接O(1)时间push到输入栈即可。peek跟pop类似,只是不会把尾部元素pop掉而已。此种实现可以所有栈操作O(1)平均时间。
// O(N) time
class MyQueue1 {
public:
/** Initialize your data structure here. */
MyQueue1() {
}
/** Push element x to the back of queue. */
void push(int x) {
while (!stk2.empty()) {
stk1.push(stk2.top());
stk2.pop();
}
stk1.push(x);
}
/** Removes the element from in front of queue and returns that element. */
int pop() {
while (!stk1.empty()) {
stk2.push(stk1.top());
stk1.pop();
}
int res = stk2.top();
stk2.pop();
return res;
}
/** Get the front element. */
int peek() {
while (!stk1.empty()) {
stk2.push(stk1.top());
stk1.pop();
}
return stk2.top();
}
/** Returns whether the queue is empty. */
bool empty() {
return stk1.empty() && stk2.empty();
}
private:
stack<int> stk1;
stack<int> stk2;
};
// O(1) amortized time
class MyQueue {
public:
/** Initialize your data structure here. */
MyQueue() {
}
/** Push element x to the back of queue. */
void push(int x) {
stk1.push(x);
}
void moveInToOut() {
if (!stk2.empty()) {
return;
}
while (!stk1.empty()) {
stk2.push(stk1.top());
stk1.pop();
}
}
/** Removes the element from in front of queue and returns that element. */
int pop() {
moveInToOut();
int res = stk2.top();
stk2.pop();
return res;
}
/** Get the front element. */
int peek() {
moveInToOut();
return stk2.top();
}
/** Returns whether the queue is empty. */
bool empty() {
return stk1.empty() && stk2.empty();
}
private:
stack<int> stk1;
stack<int> stk2;
};