-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmgb-ch07.tex
206 lines (160 loc) · 11.6 KB
/
mgb-ch07.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
%mgb-ch07
%Chapter VII - MGB Solutions
\begin{enumerate}
\item[1.] Let $B$ = number of black balls and \\
$W$ = number of white balls. \\
$R = B/W$. Set $p = B/(B+W)$, so $R = p/(1+p)$.
\begin{enumerate}
\item[(a)] Let $X_i=1$ if black ball on $i$th draw and $X_i=0$ otherwise. MLE of $p=\sum X_i/n = \overline{X}$ which implies MLE of $R = \overline{X}/(1-\overline{X})$.
\item[(b)] $X_i$ has a geometric distribution. $L(p) = p^n(1-p)^{\sum x_i}$. MLE of $p=1/(1+\overline{X})$, so MLE of $R = 1/\overline{X}$.
\end{enumerate}
\item[2.] MLE of $p_{ij}$ is $N_{ij}/n$.
\item[4.] MLE of $\mu_1 - \mu_2$ is $\overline{X}_1-\overline{X}_2$. \\
$\mbox{var}[\overline{X}_1-\overline{X}_2] = \sigma_1^2/n_1 + \sigma_2^2/n_2.\ n_1\approx n[\sigma_1(\sigma_1+\sigma_2)]$.
\item[5.] MLE of $a = (\overline{X}_1 + \overline{X}_2 + \overline{X}_3 + \overline{X}_4)/4$; \\
MLE of $b = (\overline{X}_1 + \overline{X}_2 - \overline{X}_3 - \overline{X}_4)/4$; and \\
MLE of $c = (\overline{X}_1 + \overline{X}_3 - \overline{X}_2 - \overline{X}_4)/4$.
\item[7.] Let $r$ denote the radius of the circle. Let $X_i$ denote the $i$th measurement. \\
$X_i = r +E_i$ where $E_i$ is the $i$th error of measurement. $E_i\sim N(0,\sigma^2)$. \\
Now $\mbox{var}[X_i] = \mbox{var}[E_i] = \sigma^2$ so $S^2 = \sum(X_i-\overline{X})^2/(n-1)$ is an unbiased estimator of $\sigma^2$. $(\pi/n)\displaystyle \sum_{j=1}^n(X_j-S^2)$ is an unbiased estimator of the area $= \pi r^2$.
\item[9.] Show that $P_\theta[\vert(X_1+X_2)/2-\theta\vert < \vert X_1-\theta\vert] > 1/2$ for all $\theta$. Make the transformation $U_1 = X_1-\theta$ and $U_2 = X_2-\theta$ and it suffices to show that $P[\vert U_1+U_2\vert < 2\vert U_1\vert] > 1/2$ where $U_1, U_2$ is a random sample of size two from the Cauchy density $1/\pi[1+x^2]$. \\
See Problem 20 of Chapter IV.
\item[10.] \begin{enumerate}
\item[(a)] $\sum(X_i - \hat{\theta}) = 0$ implies $\hat{\theta}=\overline{X}$.
\item[(b)] $\sum(X_i - \hat{\theta})^2$ is minimized for $\hat{\theta}=\overline{X}$.
\end{enumerate}
\item[11.] (b) $\mbox{var}[\sum a_ix_i] = \sigma^2(\sum a_i) = \sigma^2[\sum(a_i-1/n)^2 + 1/n]$.
\item[12.] (b) MLE of $\theta$ is $\min[1/2, \overline{X}]$.
\newpage
\item[17.] \begin{enumerate}
\item[(a)] $X$ is sufficient. $E[X]=0$ for all $\theta$ so $X$ is not complete.
\item[(b)] Yes; yes.
\item[(c)] $\sum \vert X_i\vert/n$.
\item[(d)] Yes. (e) Yes.
\item[(f)] $\vert X\vert$.
\end{enumerate}
\item[18.] (b) Yes.
\item[19.] \begin{enumerate}
\item[(c)] Middle observation for add sample size and anything between two middle observations for even sample size.
\item[(d)] No.
\end{enumerate}
\item[21.] In computing the means and mean-squared errors use the calculations in Problem 33 of Chapter VI.
\begin{enumerate}
\item[(a)] $T_1 = 2\overline{X}$. MSE is $\theta^2/3n$.
\item[(b)] $T_2 = Y_n$. MSE is $2\theta^2/[(n+1)(n+2)]$.
\item[(c)] $T_3 = [(n+2/(n+1))]Y_n.$ MSE is $\theta^2/(n+1)^2$.
\item[(d)] $T_4 = [(n+1)/n]Y_n.$ MSE is $\theta^2/[n(n+2)]$.
\item[(e)] MSE is $2\theta^2/(n+1)(n+2)$.
\item[(g)] $Y_n^2/12$.
\end{enumerate}
\item[22.] \begin{enumerate}
\item[(a)] $[(1-2\theta)^2\theta(1-\theta)]/n$
\item[(b)] $\sum X$ is a complete sufficient statistic. $S^2=\sum(X_i-\overline{X})^2/(n-1)$ is an unbiased estimator of $\theta(1-\theta)$, since the sample variance is an unbiased estimator of the population variance; furthermore, $S^2=[\sum X_i^2-n\overline{X}^2]/(n-1) = [\sum X_i -n\overline{X}^2]/(n-1)$ is a function of $\sum X_i$; hence, by the Lehmann-Scheff\'e Theorem, $S^2$ is UMVUE of $\theta(1-\theta)$.
\end{enumerate}
\item[24.] $-\ln X_i$ has an exponential distribution, so $-\sum \ln X_i$ has a gamma distribution.
\begin{enumerate}
\item[(a)] MLE of $\theta$ is $n/-\sum \ln X_i$, $\therefore$ MLE of $\mu$ is $n/(n-\sum \ln X_i)$.
\newpage
\item[(b)] $-\sum \ln X_i$ is complete minimal sufficient by Theorem 9. A minimal sufficient statistic must be a function of every other sufficient statistic. $-\sum \ln X_i$ is not a function of $\sum X_i$, hence $\sum X_i$ is not sufficient for $n>1$. $\sum X_i$ is sufficient for $n=1$. Why?
\item[(c)] Yes, $1/\theta$.
\item[(d)] $-\sum \ln X_i/n$ is UMVUE of $1/\theta$; $(n-1)/-\sum \ln X_i$ is UMVUE of $\theta$. $X_1$ is an unbiased estimator of $\theta/(1+\theta)$, hence $E[X_1 \vert -\sum \ln X_i]$ is UMVUE of $\theta/(\theta + 1)$. For $n>1$, following a procedure similar to that in Example 35, the condition distribution of $X_1$ given $-\sum \ln X_i$ can be found and then conditional expectation can be obtained. Let $S = -\sum \ln X_i$, then $E[X_1\vert S=s] = \displaystyle\int_{e^{-s}}^{1} [x_1(n-1) + (s+\ln x_1)^{n-2}/x_1s^{n-1}]\ dx_1 = \dfrac{(n-1)e^{-s}}{s^{n-1}}\int_0^s u^{n-2}e^u\ du$ which can be integrated and the answer expressed as a finite sum. For $n=1$, what is the UMVUE of $\theta/(1+\theta)$?
\end{enumerate}
\item[26.] \begin{enumerate}
\item[(a)] $2\overline{X}-1$. Mean is $\theta$ and mean-squared error is $(\theta^2-1)/3n$.
\item[(b)] MLE is $Y_n$. The distribution of $Y_n$ is given by $P[Y_n=j] = [(j/\theta)^n - ((j-1)/\theta)^n]\ I_{\{1,\ldots,\theta\}}(j)$ from which the mean and mean-squared error can be found.
\item[(c)] $Y_n$ is sufficient by the factorization criterion. To show that $E_\theta[\chi(Y_n)] = 0$ for $\theta = 1, 2, 3, \ldots$ implies that $\chi(j)=0$ for $j=1,2,\ldots$. It suffices to substitute in $\theta = 1, 2, 3$, etc. successively.
\item[(d)] By the Lehmann-Scheff\'e Theorem and part (c) it suffices to show that the given statistic is unbiased.
\end{enumerate}
\item[27.] $X$ is sufficient but not complete.
\item[28.] $\tau(\theta) = \mbox{median} = \ln 2/\theta$. We already know that the MLE and UMVUE of $1/\theta$; to find the MLE amd UMVUE of $\tau(\theta)$ requires a simple scale adjustment.
\item[29.] \begin{enumerate}
\item[(b)] $X^2 - 1$.
\item[(c)] $I_{(0,\infty)}(X_1)$.
\newpage
\item[(d)] $\Phi(\overline{X})$.
\item[(e)] $\overline{X}^2 - (1/n)$.
\item[(f)] $X_1\vert\overline{X} \sim N(\overline{X},(n-1)/n)$ and $E[I_{(0,\infty)}(X_1)\vert \overline{X}] = \Phi\left(\sqrt{\dfrac{n}{n-1}}(\overline{X})\right)$ is UMVUE for $P[X>0]$.
\end{enumerate}
\item[30.] $I_{\{0,1\}}(X_1)$ is an unbiased estimator of $(1+\lambda)e^{-\lambda}$. See Example34 for a procedure that will find an UMVUE of $(1+\lambda)e^{-\lambda}$.
\item[31.] This is a ``triangular" density rather than a ``rectangular" density as in Problem 21. The results are quite similar.
\item[32.] The density given in this problem is a form of the Pareto density. This problem is like Problem 24. In that problem $-\ln X_i$ has an exponential distribution; in this problem $\ln(1+X_i)$ has an exponential distribution.
\begin{enumerate}
\item[(a)] $(1+\overline{X})/\overline{X}$.
\item[(b)] MLE of $1/\theta$ is $\sum \ln(1+X_i)/n$.
\item[(c)] $\sum \ln(1+X_i)$.
\item[(d)] $1/n\theta^2$
\item[(e)] $\sum \ln(1+X_i)/n$.
\item[(f)] $(n-1)/\sum \ln(1+X_i)$.
\end{enumerate}
\item[33.] \begin{enumerate}
\item[(a)] $\max[-Y_1,Y_n]$, or, the absolute value of the observation farthest from zero.
\item[(b)] $X$ is not minimal sufficient since $\vert X\vert$ is sufficient. $X$ is not complete.
\end{enumerate}
\item[34.] \begin{enumerate}
\item[(a)] $\sum X_i$ is a complete sufficient statistic and the sample variance is an unbiased estimator so an UMVUE exists.
\end{enumerate}
\item[35.] \begin{enumerate}
\item[(a)] $\sum X_i$
\item[(b)] Find it by using the form given in Equation (16).
\end{enumerate}
\item[37.] $e^{-X_i}$ has an exponential distribution with parameter $e^\theta$. See Problem 24 and 32 for similar problems.
\begin{enumerate}
\item[(f)] The given statistic is a function of the complete sufficient statistics $\sum e^{-\lambda_i}$ which has a gamma distribution. Verify that the given statistic is unbiased.
\end{enumerate}
\newpage
\item[39.] This is a generalization of Problems 21 and 31.
\begin{enumerate}
\item[(a)] $a(\theta) = \displaystyle [\int_0^\theta b(x)\ dx]^{-1}$ so $a(\theta)$ is non-increasing. The likelihood function is proportional to $a^n(\theta)$ for $\theta > Y_n$. MLE of $\theta$ is $Y_n$.
\item[(b)] $Y_n$. See Example 33 for the idea of the completeness proof.
\end{enumerate}
\item[40.] $\theta$ is the mean and variance.
\begin{enumerate}
\item[(a)] $\sum X_i^2$.
\item[(b)] It is not a function of a complete sufficient statistic.
\item[(c)] No.
\end{enumerate}
\item[41.] $\theta$ should have been assumed positive. Then $\theta$ is the mean and standard deviation, and is a scale parameter.
\item[42.] \begin{enumerate}
\item[(a)] $Y_n/2$.
\item[(b)] No, $E[\dfrac{n+1}{2n+1}\!Y_n - \dfrac{n+1}{n+2}\!Y_1] = 0$.
\item[(c)] $\dfrac{(n+2)[Y^{-n-1}_1 - (Y_n/2)^{-n-1}]}{(n+1)[Y^{-n-2}_1 - (Y_n/2)^{-n-2}]}$.
\item[(d)] $(Y_1+Y_n)/3$.
\end{enumerate}
\item[43.] \begin{enumerate}
\item[(a)] $\sum X_i^2$ is complete and sufficient. $\sum X_i^2/n$ is UMVUE of $\theta^2$.
\item[(b)] $c^* = 1/(n+2)$ minimizes MSE in family of estimators of form $c\sum X_i^2$.
\item[(c)] $\Gamma(n/2)\sqrt{\sum X_i^2}/[\sqrt{2}\Gamma((n+1)/2)]$.
\item[(e)] Yes, since both are scale invariant.
\end{enumerate}
\item[44.] \begin{enumerate}
\item[(a)] $Y_1$
\item[(b)] $Y_1$
\item[(c)] $\overline{X}-1$
\item[(d)] $Y_1$
\item[(e)] $Y_1 - (1/n)$
\item[(f)] $Y_1 - (1/n)$
\item[(g)] $\dfrac{e^{(n-1)Y_1}[Y_1-1/(n-1)] + 1/(n-1)}{e^{(n-1)Y_1} - 1}$
\end{enumerate}
\newpage
\item[45.] The $\theta$ in the indicator function should be 0.
\begin{enumerate}
\item[(a)] Posterior distribution of $\theta \propto$ \\
$ \theta^n\ \exp[(\theta-1)\ \log\sum x_i]\theta^{r-1}e^{-\lambda\theta}$, hence it is $\mbox{gamma}(n+r, \lambda-\sum \log x_i)$.
\item[(b)] Mean posterior is $(n+r)/(\lambda - \sum\log X_i)$.
\end{enumerate}
\item[46.] Similar to Example 45.
\item[47.] (f) Similar, but slightly more tedious, to Example 46.
\item[50.] See the last paragraph in Section 7.2.
\item[51.] This problem is similar to several others and makes a good review question. Recall that the sum of geometric distributed r.v.'s have negative binomial distribution. See Problem 21 in Chapter V.
\begin{enumerate}
\item[(g)] $\theta=P[X=0]$, so $I_{\{0\}}(X_1)$ is an unbiased estimator, and $E[I_{\{0\}}(X_1)\vert \sum X_i]$ is UMVUE.
\item[(h)] posterior distribution $\propto \theta^n(1-\theta)^{\sum x_i}I_{(0,1)}(\theta)$, hence the posterior is $\mbox{beta}(n+1, \sum x_i +1)$.
\end{enumerate}
\item[53.] The middle $\beta$ should be $1/\beta$. The factorization criterion shows that $Y_1$ and $\sum X_i$ are jointly sufficient. $Y_1$ and $\sum (X_i-Y_1)$ are sufficient and complete. Now $E[Y_1] = \alpha + (\beta/n)$ and $E[\sum(X_i-Y_1)] = (n-1)\beta$, so $\sum(X_i-Y_1)/(n-1)$ is UMVUE of $\beta$ and $Y_1 - [\sum(X_i-Y_1)/n(n-1)]$ is UMVUE of $\alpha$.
\item[54.] \begin{enumerate}
\item[(a)] Factorization criterion gives $(\sum X_i, Y_1)$.
\item[(b)] $L(\theta, \alpha; x_1,\ldots,x_n) = (1-\theta)^n\theta^{\sum x_i}\theta^{-n\alpha}$ for $0\le \theta\le 1$ and $\alpha = y_1$ \\
$y_1-1, y_1-2,\ldots$. It is monotone increasing in $\alpha$ for each $\theta$, hence MLE of $\alpha$ is $Y_1$ and MLE of $\theta$ is $(\overline{X}-Y_1)/(\overline{X}-Y_1+1)$.
\end{enumerate}
\item[55.] Picture the likelihood function. Between any two consecutive order statistics, the likelihood function is ``cusp" shaped. It can be concluded that the maximum of the likelihood function occurs at an order statistic, pick that order statistic that maximizes $L(y_j)$ for $j=1,\dots,n$.
\end{enumerate}