This repository has been archived by the owner on Jul 7, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaper_management_science.py
992 lines (896 loc) · 34.2 KB
/
paper_management_science.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
"""Code to run to get data for extended version of paper."""
from collections import defaultdict
from csv import reader, writer
from itertools import product
from os import remove
from pathlib import Path
from pickle import dump, load
from statistics import mean, median
from tempfile import NamedTemporaryFile
from typing import Callable, Literal, cast
from igraph import Graph
from matplotlib.pyplot import (
close,
figure,
legend,
plot,
savefig,
title,
xlabel,
ylabel,
)
from more_itertools import powerset
from networkx import DiGraph, draw, draw_networkx_edge_labels, spring_layout
from numpy import (
arange,
array,
asarray,
cumsum,
float64,
fromiter,
int64,
ndarray,
outer,
savetxt,
zeros,
)
from numpy.typing import NDArray
from pandas import DataFrame, Series, read_csv
from common import (
get_all_graphs,
get_data,
get_dataset_graph_summaries,
make_summary_csv,
plot_compute_times,
plot_expected_influence_graphs,
plot_hists,
read_in_graph_summary_data,
)
from config import (
AMAZON_ALL_GENRE_FILE,
AMAZON_NODEIDS,
AMAZON_PAPER_OUTPUTS,
AMAZON_RAW_OUTPUTS,
CONV_CVAR_OUT_PATH,
DEFAULT_TARGET_SIZE,
DISTMAT,
GRAPHS_USED,
GRT,
HETEDGEWEIGHT,
PAPER_MS_OUTPUT_FOLDER,
RAW_OUTPUT_FOLDER,
TSV_FOLDER,
GraphType,
HetEdgeWeightType,
SolveMethod,
)
from conv import conv_est, conv_greed
from cvar import cvar
from data import make_genre_csv
from dro import get_pi_star, get_robust_graph
from graph_functions import (
create_graph_basic,
get_tsv_path,
graph_to_tsv,
highest_outdegrees_seeds,
solution_diameter,
standardize_graph,
)
from greed import accelgreedy
from pmc import pmc_inf_est
from util import WriterProtocol, executable_check
CVAR_CONV_SUMMARY_PATH = Path("polblogs_cvar_conv_summary.csv")
"""Convex combinations summary file."""
MS_METHODS_USED = (
SolveMethod.correlation_robust,
SolveMethod.independence_cascade,
SolveMethod.highest_outdegree,
)
# Graph settings
AMAZON_EDGES = (HetEdgeWeightType.amazonlow, HetEdgeWeightType.amazonhigh)
CVAR_EDGES = (HetEdgeWeightType.uniform, HetEdgeWeightType.trivalency)
REVERSE_EDGETYPE_DICT = {
"trivalency": HetEdgeWeightType.trivalency,
"uniform": HetEdgeWeightType.uniform,
}
NUM_ALPHAS_LAMBDAS = 4
ALPHA_LAMB_BASE = [x / NUM_ALPHAS_LAMBDAS for x in range(1, NUM_ALPHAS_LAMBDAS + 1)]
"""Linearly spaced alpha (CVaR parameter) values."""
ALPHAS = sorted([0.01] + ALPHA_LAMB_BASE)
"""Linearly spaced alpha (CVaR parameter) values, and 0.01."""
TRIVALENCY_ALPHAS = sorted(ALPHAS + [0.9, 0.92, 0.94, 0.96, 0.98])
"""
Alpha values to handle trivalency small values. This shows that at low
probability edge weights, a CVaR alpha which is too low will not result
in a meaningful solution, or objective
"""
LAMBDAS: tuple[float, ...] = (0.0,) + tuple(ALPHA_LAMB_BASE)
"""
Lambda refers to the convex combination coefficient of independence
cascade vs. correlation-robust solution. Lambda = 1 => pure IC
"""
OPTIMAL_SMALL_GRAPH_SIZE = 16
OPTIMAL_CSV_FILENAME = (
PAPER_MS_OUTPUT_FOLDER / f"small_graph_{OPTIMAL_SMALL_GRAPH_SIZE}_all_data.csv"
)
NUM_ALPHAS_LAMBDAS_SMALL_GRAPH = 40
LAMBDAS_ALPHAS_SMALL_GRAPH: tuple[float, ...] = tuple(
sorted(
[0.01]
+ [
x / NUM_ALPHAS_LAMBDAS_SMALL_GRAPH
for x in range(1, NUM_ALPHAS_LAMBDAS_SMALL_GRAPH + 1)
]
)
)
"""
Values that both CVaR and Convex combination parameters take for small graph.
"""
WORST_CASE_PATH = RAW_OUTPUT_FOLDER / Path("worst_case_pmf.pickle")
ECOUNT_PATH = RAW_OUTPUT_FOLDER / Path("robust_ecounts.pickle")
def get_heterogenous_seed_summaries() -> None:
"""
Summarises some data regarding the heterogeneous edge weight graphs.
Table 3 for Management Science version.
"""
# read data
data_dict, table_data = read_in_graph_summary_data()
# Start writing
with open(
PAPER_MS_OUTPUT_FOLDER / "heterogeneous_edges.csv",
"w",
encoding="utf-8",
newline="",
) as table2csv:
table2writer = writer(table2csv)
table2writer.writerow(
[
"Seed Set S",
"Dataset",
"p",
"f_corr (S)",
"f_ic (S)",
"Min Deg",
"Avg Deg",
"Max Deg",
"Diam",
]
)
for sol_method in MS_METHODS_USED:
for graph_type in GRAPHS_USED:
for edge_weight in HETEDGEWEIGHT:
expt_config = (
graph_type.name,
edge_weight.name,
sol_method.name,
)
# Following the table division as made
# in the paper
conf_as_written = list(
(expt_config[0], expt_config[2], expt_config[1])
)
table2writer.writerow(
conf_as_written
+ [
mean(y[idx] for y in data_dict[expt_config])
for idx in range(2)
]
+ list(table_data[expt_config])
)
print("Finished writing graph summary data")
def _data_gather(
output_file: Path,
data_function: Callable[..., GRT],
*data_args,
verbosity: int = 1,
) -> None:
"""
Gather data if data file does not exist.
Helper function used in other functions. If expected output file
does not exist, a standardised method of writing output is
utilised.
"""
if not output_file.exists():
data = data_function(*data_args)
if verbosity:
print(f"Writing {output_file}")
with open(output_file, mode="w", newline="", encoding="utf-8") as out_io:
csv_writer = writer(out_io)
for data_elements in zip(*data):
csv_writer.writerow(data_elements)
def get_cvar_conv_data(inp_graph: Graph) -> None:
"""Retrieve greedy data for all convex combination cases wanted."""
output_file_stem: Path = CONV_CVAR_OUT_PATH / inp_graph["type"].name
edge_type: HetEdgeWeightType = inp_graph["edge_type"]
if inp_graph["type"] == GraphType.polblogs:
if inp_graph["edge_type"] == HetEdgeWeightType.uniform:
alpha_iter = ALPHAS
lambda_iter = LAMBDAS
else: # if trivalency
alpha_iter = TRIVALENCY_ALPHAS
lambda_iter = (0,)
else:
alpha_iter = (1,)
lambda_iter = LAMBDAS
for alpha, lambda_ in product(alpha_iter, lambda_iter):
_data_gather(
Path(f"{output_file_stem}_{edge_type}_{alpha:.3f}_{lambda_:.3f}.csv"),
conv_greed,
inp_graph,
DEFAULT_TARGET_SIZE,
alpha,
lambda_,
)
def get_amazon_est_data(input_graph: Graph) -> None:
"""Get model-misspecified data from greedy seeds."""
output_file_stem = CONV_CVAR_OUT_PATH / "amazon"
graph_tsv = get_tsv_path(input_graph["type"], input_graph["edge_type"])
if not graph_tsv.exists():
graph_to_tsv(input_graph)
edge_type = input_graph["edge_type"]
for greedy_lambda, est_lambda in product(LAMBDAS, repeat=2):
greedy_result_file = Path(
f"{output_file_stem}_{edge_type}_1.000_{greedy_lambda:.3f}.csv"
)
out_file = Path(
f"{output_file_stem}_{edge_type}_1.000_{greedy_lambda:.3f}_{est_lambda:.3f}.csv"
)
if not out_file.exists():
greedy_seed_set: list[int] = []
with open(
greedy_result_file, mode="r", encoding="utf-8"
) as greedy_result_io:
for line in greedy_result_io:
line_split = line.split(",")
greedy_seed_set.append(int(line_split[0]))
with NamedTemporaryFile(mode="w+", delete=False) as tmp:
tmp.write(" ".join(str(s) for s in greedy_seed_set))
marg_list, compute_list = conv_est(Path(tmp.name), graph_tsv, est_lambda, 1)
with open(
out_file, mode="w", newline="", encoding="utf-8"
) as out_file_object:
csv_writer = writer(out_file_object)
for marg, compute_time in zip(marg_list, compute_list):
csv_writer.writerow([marg, compute_time])
remove(tmp.name)
print(f"Writing {out_file}")
def _process_csv_file(
input_summary_writer: WriterProtocol,
input_csv_file: Path,
inp_graph: Graph,
) -> None:
"""
Process csv file for summary.
Only contains summary for `polblogs`.
"""
with open(input_csv_file, encoding="utf-8") as csvfile:
name_spl = input_csv_file.name.split("_")
alpha = float(name_spl[2])
lambda_ = float(name_spl[-1][:-4]) # removing ".csv"
csv_reader = reader(csvfile)
seeds: list[int] = []
cvar_val: float = 0.0
time = 0.0 # prevent 'possibly unbound'
for idx, line in enumerate(csv_reader):
cvar_val += float(line[1])
seeds.append(int(line[0]))
if idx == (DEFAULT_TARGET_SIZE - 1):
time = float(line[2])
deg: list[int] = inp_graph.degree(seeds) # default degree mode is 'all'
input_summary_writer.writerow(
[inp_graph["edge_type"], alpha, lambda_, cvar_val, time]
+ [
min(deg),
mean(deg),
max(deg),
solution_diameter(inp_graph, seeds),
]
+ seeds
)
def make_cvar_conv_summary(
input_summary_csv_filename: Path,
inp_graph_dictionary: dict[HetEdgeWeightType, Graph],
) -> None:
"""
Create CVaR and conv summary file.
inp_graph_dictionary is expected to be `polblogs`.
"""
with open(
input_summary_csv_filename,
mode="w",
newline="",
encoding="utf-8",
) as summary_csv:
summary_writer = writer(summary_csv)
summary_writer.writerow(
[
"Edge Type",
"Alpha",
"Lambda",
"Objective Function",
"Compute Time (s)",
]
+ ["Min Deg (S)", "Mean Deg (S)", "Max Deg (S)", "Diam (S)"]
+ [f"S_{x}" for x in range(DEFAULT_TARGET_SIZE)]
)
for file_count, csv_file in enumerate(
CONV_CVAR_OUT_PATH.rglob("polblogs_*.csv"), 1
):
filesplit = csv_file.name.split("_")
edge_type = REVERSE_EDGETYPE_DICT[filesplit[1]]
csv_graph = inp_graph_dictionary[edge_type]
if not file_count % 100:
print(f"Processed {file_count} files")
_process_csv_file(summary_writer, csv_file, csv_graph)
print("Finished writing CVaR and convex summary.")
def get_seeds_from_summary() -> dict[tuple[HetEdgeWeightType, float, float], list[int]]:
"""
Retrieve solution sets for each configuration and edge type.
First float is alpha, CVaR parameter.
Second float is lambda, convex combination parameter.
"""
out_seeds: dict[tuple[HetEdgeWeightType, float, float], list[int]] = {}
with open(
PAPER_MS_OUTPUT_FOLDER / CVAR_CONV_SUMMARY_PATH, mode="r", encoding="utf-8"
) as csv_file:
csv_reader = reader(csv_file)
next(csv_reader) # skip header
for line in csv_reader:
edge_type = REVERSE_EDGETYPE_DICT[line[0]]
alpha = float(line[1])
lambda_ = float(line[2])
seeds = [int(x) for x in line[9:]]
out_seeds[(edge_type, alpha, lambda_)] = seeds
return out_seeds
def tabulate_alpha_greedy_compare(
inp_graph: Graph,
inp_solns: dict[tuple[HetEdgeWeightType, float, float], list[int]],
alphas_to_compare: list[float],
) -> None:
"""
Create alpha greedy comparison data file if it does not exist.
Should correspond to Tables 6 and 7 in final version.
"""
output_csv_filename = (
PAPER_MS_OUTPUT_FOLDER / f"cvar_{inp_graph['edge_type']}_table.csv"
)
if not output_csv_filename.exists() or True:
alpha_df = DataFrame(
columns=list(f"Eval Alpha {alpha:.2f}" for alpha in alphas_to_compare)
)
alpha_df.index.name = "Greedy Alpha"
for alpha_cmpr in alphas_to_compare:
alpha_df.loc[alpha_cmpr] = [ # type: ignore
cvar(
inp_graph,
alpha,
inp_solns[(inp_graph["edge_type"], alpha_cmpr, 0)],
)
for alpha in alphas_to_compare
]
alpha_df.loc["deg"] = [
cvar(
inp_graph,
alpha,
highest_outdegrees_seeds(inp_graph, DEFAULT_TARGET_SIZE),
)
for alpha in alphas_to_compare
]
intermediate_df = alpha_df.round(2)
# should silence new warnings from
# https://pandas.pydata.org/docs/whatsnew/v2.1.0.html#deprecated-silent-upcasting-in-setitem-like-series-operations
alpha_df = alpha_df.astype("object")
alpha_df = intermediate_df.apply(
lambda ser: ser.apply(lambda elem: f"{elem} ({elem/ser.max():.3f})")
)
alpha_df.to_csv(output_csv_filename)
print(f"Alpha comparison table for {inp_graph['edge_type']} edges created.")
def tabulate_conv_data(input_graph: Graph) -> None:
"""
Create tabular version of f^Mix greedy lambda vs evaluation lambda.
Corresponds to Tables 4 and 5 in Management Science paper.
"""
amazon_file_stem = CONV_CVAR_OUT_PATH / "amazon"
edge_type = cast(HetEdgeWeightType, input_graph["edge_type"])
if edge_type not in (HetEdgeWeightType.amazonlow, HetEdgeWeightType.amazonhigh):
raise ValueError("Unexpected edge type input to function.")
results: dict[float, list[float]] = {}
for greedy_lambda, est_lambda in product(LAMBDAS, repeat=2):
file_to_read = Path(
f"{amazon_file_stem}_{edge_type}_1.000_{greedy_lambda:.3f}_{est_lambda:.3f}.csv"
)
with open(file_to_read, encoding="utf-8") as file_io:
obj_gain: float = 0.0
for line in file_io:
obj_gain += float(line.split(",")[0])
if greedy_lambda not in results:
results[greedy_lambda] = [obj_gain]
else:
results[greedy_lambda].append(obj_gain)
results_df = DataFrame(results).T
results_df.index.name = "greedy lambda"
results_df.rename(
columns={x: f"eval lambda = {LAMBDAS[x]}" for x in range(5)}, inplace=True
)
intermediate_df = results_df.round(2)
results_df = results_df.astype("object")
results_df = intermediate_df.apply(
lambda ser: ser.apply(lambda elem: f"{elem} ({elem/ser.max():.3f})")
)
results_df.to_csv(PAPER_MS_OUTPUT_FOLDER / f"conv_{edge_type}.csv")
print(f"Finished gathering data for f^Mix on amazon for edge type {edge_type}.")
def check_stability(input_graph: Graph) -> None:
"""
Check stability of seed sets with respect to sample size.
Requires C++ programs to use random values rather than
current implementation of being seeded by specific values.
"""
stability_dir = CONV_CVAR_OUT_PATH / Path("stab")
stability_dir.mkdir(parents=True, exist_ok=True)
for seed_set_size in (2**i for i in range(15)):
_data_gather(
stability_dir / f"{seed_set_size}.csv",
conv_greed,
input_graph,
DEFAULT_TARGET_SIZE,
1,
0.5,
seed_set_size,
)
_data_gather(
stability_dir / "stability.csv",
conv_greed,
input_graph,
DEFAULT_TARGET_SIZE,
1,
0.5,
2,
)
def get_genres() -> tuple[list[str], dict[str, list[str]]]:
"""
Get the genres of every seed.
Result is a tuple of genre names and a dictionary with DVDs as keys and a list of essentially flags
of whether it is that genre. An empty string means it is not that genre, and "1" represents that it
is that genre.
"""
out_genres: dict[str, list[str]] = {}
with open(AMAZON_ALL_GENRE_FILE, mode="r", encoding="utf-8") as genre_io:
out_genre_names = next(genre_io).split(",")[1:]
out_genre_names[-1] = out_genre_names[-1].strip()
for line in genre_io:
ls_ = line.split(",")
ls_[-1] = ls_[-1].strip()
out_genres[ls_[0]] = ls_[1:]
return out_genre_names, out_genres
def get_genre_similarity(
input_graph: Graph, input_genre_dictionary: dict[str, list[str]]
) -> None:
"""
Get the one-hop genres from every node / edge.
Results were analyzed briefly but not used in paper.
"""
node_names: list[str] = input_graph.vs()["name"]
num_genres = len(next(iter(input_genre_dictionary.values())))
out_matrix = zeros((num_genres, num_genres), dtype=int64)
for node, genres in input_genre_dictionary.items():
node_genres = fromiter(map(lambda x: int(x.strip() or 0), genres), dtype=int64)
for out_neighbor in input_graph.neighbors(node, mode="out"):
neighbor_genres = fromiter(
map(
lambda x: int(x.strip() or 0),
input_genre_dictionary[node_names[out_neighbor]],
),
dtype=int64,
)
out_matrix += outer(node_genres, neighbor_genres)
savetxt(CONV_CVAR_OUT_PATH / "similarity.txt", out_matrix, fmt="%d")
def get_amazon_greedy_seeds(
input_amazon_weight_type: (
Literal[HetEdgeWeightType.amazonhigh] | Literal[HetEdgeWeightType.amazonlow]
),
) -> tuple[set[int], dict[float, list[int]]]:
"""
Read the greedy seeds into Python.
Uses only low p configuration of amazon
"""
output_file_stem = CONV_CVAR_OUT_PATH / "amazon"
all_greedy_seeds: set[int] = set()
greedy_seeds_lambda: dict[float, list[int]] = {}
for greedy_lambda in LAMBDAS:
greedy_seeds_lambda[greedy_lambda] = []
file_to_read = Path(
f"{output_file_stem}_{input_amazon_weight_type}_1.000_{greedy_lambda:.3f}.csv"
)
with open(file_to_read, encoding="utf-8") as file_io:
for line in file_io:
seed = int(line.split(",")[0])
greedy_seeds_lambda[greedy_lambda].append(seed)
all_greedy_seeds.add(seed)
return (all_greedy_seeds, greedy_seeds_lambda)
def get_greedy_genres(
input_amazon_edge_type: (
Literal[HetEdgeWeightType.amazonlow] | Literal[HetEdgeWeightType.amazonhigh]
),
input_all_greedy: set[int],
input_greedy_dict: dict[float, list[int]],
input_headers: list[str],
input_genre_dict: dict[str, list[str]],
) -> None:
"""
Get the greedy genres into a summary file.
Corresponds with Figures 13 and 14 in Management Science Paper.
"""
nodeids: dict[int, str] = {}
with open(AMAZON_NODEIDS, mode="r", encoding="utf-8") as nodeid_io:
for line in nodeid_io:
ls_ = line.split()
nodeid, asin = int(ls_[0]), ls_[1]
nodeids[nodeid] = asin
with open(
AMAZON_PAPER_OUTPUTS / f"{input_amazon_edge_type}_greedy.csv",
mode="w",
newline="",
encoding="utf-8",
) as greedy_io:
csv_writer = writer(greedy_io)
csv_writer.writerow(["ASIN"] + list(LAMBDAS) + input_headers)
for seed in input_all_greedy:
asin = nodeids[seed]
inside_greedy = [""] * len(LAMBDAS)
for idx, greedy_lambda in enumerate(LAMBDAS):
if seed in input_greedy_dict[greedy_lambda]:
inside_greedy[idx] = input_greedy_dict[greedy_lambda].index(seed) # type: ignore
csv_writer.writerow([asin] + inside_greedy + input_genre_dict[asin])
partition_dict: defaultdict[frozenset[float], set[int]] = defaultdict(set)
for seed in input_all_greedy:
partition: set[float] = set()
for partition_lambda in (0, 0.5, 1):
if seed in input_greedy_dict[partition_lambda]:
partition.add(partition_lambda)
partition_dict[frozenset(partition)].add(seed)
for combinations, combination_seeds in partition_dict.items():
if len(combinations) > 0:
combination_csv_file = AMAZON_PAPER_OUTPUTS / Path(
"amazon_" + "_".join(map(str, combinations)) + ".csv"
)
with open(
combination_csv_file,
mode="w",
newline="",
encoding="utf-8",
) as combination_io:
combination_writer = writer(combination_io)
combination_writer.writerow(["ASIN"] + input_headers)
for seed in combination_seeds:
asin = nodeids[seed]
combination_writer.writerow([asin] + input_genre_dict[asin])
pd_read: DataFrame = read_csv(combination_csv_file)
filtered_data = pd_read.dropna(axis="columns", how="all")
filtered_data.to_csv(combination_csv_file, index=False)
def get_small_example_data() -> None:
"""Run the small example where an optimal value is found."""
print("Getting small graph (|V| = 16) data.")
rand_graph = standardize_graph(
create_graph_basic(
GraphType.random_scale_free,
num_nodes=OPTIMAL_SMALL_GRAPH_SIZE,
graph_seed=0,
),
HetEdgeWeightType.uniform,
)
small_tsv_path = get_tsv_path(
GraphType.random_scale_free,
HetEdgeWeightType.uniform,
OPTIMAL_SMALL_GRAPH_SIZE,
)
if not small_tsv_path.exists():
graph_to_tsv(rand_graph)
if not OPTIMAL_CSV_FILENAME.exists():
dist_mat: DISTMAT = asarray(rand_graph.distances(weights="q"))
with open(
OPTIMAL_CSV_FILENAME, mode="w", newline="", encoding="utf-8"
) as optimal_csv:
optimal_writer = writer(optimal_csv)
# Header
optimal_writer.writerow(
["Seed set S", "|S|"]
+ [f"conv({alpha}, 0)" for alpha in LAMBDAS_ALPHAS_SMALL_GRAPH]
+ [f"conv(1, {lambda_})" for lambda_ in LAMBDAS_ALPHAS_SMALL_GRAPH]
)
for seed_set in powerset(x.index for x in rand_graph.vs()):
if len(seed_set) <= 4:
seed_set = cast(list[int], list(seed_set))
exp_inf: float = pmc_inf_est(small_tsv_path, seed_set)
cvar_vals = [
cvar(
rand_graph,
alpha,
seed_set,
dist_mat=dist_mat,
)
for alpha in LAMBDAS_ALPHAS_SMALL_GRAPH
]
correlation_worst_case = cvar_vals[-1] # case of alpha = 1
conv_vals = [
exp_inf * lambda_ + (1 - lambda_) * correlation_worst_case
for lambda_ in LAMBDAS_ALPHAS_SMALL_GRAPH
]
optimal_writer.writerow(
[";".join(map(str, seed_set)), len(seed_set)]
+ cvar_vals
+ conv_vals
)
def analyse_small_example() -> None:
"""Run some small analysis of the small dataset."""
df = read_csv(OPTIMAL_CSV_FILENAME, index_col=0)
# Maximisers
opti_seeds_by_size: DataFrame = df.groupby("|S|").idxmax() # type: ignore
opti_seeds_by_size.to_csv(
PAPER_MS_OUTPUT_FOLDER / "small_graph_optimal_seeds_by_seed_size.csv"
)
opti_seeds: Series = opti_seeds_by_size.iloc[4]
opti_seeds.to_csv(PAPER_MS_OUTPUT_FOLDER / "opti_seeds.csv")
def plot_small_example() -> None:
"""
Plot small example for paper, highlighting optimal seeds.
Corresponds somewhat to Figure 8
"""
rand_graph = standardize_graph(
create_graph_basic(GraphType.random_scale_free, OPTIMAL_SMALL_GRAPH_SIZE, 0),
HetEdgeWeightType.uniform,
)
nxg = DiGraph(rand_graph.get_edgelist())
pos = spring_layout(nxg, seed=0, k=1) # distance, further than default
opti_graphs = [
[6, 7, 13, 14], # lambda from 0.6 to 1, alpha=1
[0, 8, 10, 14], # alpha from 0 to 0.405
[8, 10, 13, 14], # alpha from 0.405 to 0.497
[6, 10, 13, 14], # alpha from 0.497 to 1
]
node_cols: dict[int, list[str]] = {x: [] for x in range(len(opti_graphs))}
for opti_graph_idx, opti_graph in enumerate(opti_graphs):
figure(figsize=(16, 16))
for node in nxg:
if node in opti_graph:
node_cols[opti_graph_idx].append("#FF0000")
else:
node_cols[opti_graph_idx].append("#8888FF")
draw(
nxg,
pos=pos,
node_color=node_cols[opti_graph_idx],
labels={node: node for node in nxg.nodes()},
)
draw_networkx_edge_labels(
nxg,
pos,
{e.tuple: f'{e["p"]:.3f}' for e in rand_graph.es()},
)
savefig(PAPER_MS_OUTPUT_FOLDER / f"small{opti_graph_idx}.png", dpi=300)
close()
def count_like_to_like(input_graph: Graph) -> dict[tuple[int, int], int]:
"""Homophily computation."""
counter: dict[tuple[int, int], int] = {
x: 0 for x in ((0, 0), (0, 1), (1, 0), (1, 1))
}
for e in input_graph.es:
counter[
(
input_graph.vs[e.source]["value"],
input_graph.vs[e.target]["value"],
)
] += 1
return counter
def get_homophily_data(input_graph: Graph) -> None:
"""Compute data required for arguments about graph homophily."""
if (not WORST_CASE_PATH.exists()) or (not ECOUNT_PATH.exists()):
total_nodes: int = input_graph.vcount()
worst_case_pmf = zeros(total_nodes)
ecount_data: list[dict[tuple[int, int], int]] = []
greedy_seeds = accelgreedy(input_graph, 40, SolveMethod.correlation_robust)[0]
pi_star_tuple = get_pi_star(input_graph, greedy_seeds)
pi_star = {pi_node[0]: pi_node[1] for pi_node in pi_star_tuple}
pi_breakpoints = sorted(set(x[1] for x in pi_star_tuple))
# unused variable are the breakpoints separating
# different edge outcomes
for breakpoint_idx, _ in enumerate(pi_breakpoints[:-1], start=1):
q_tilde = median(
(
pi_breakpoints[breakpoint_idx],
pi_breakpoints[breakpoint_idx - 1],
)
) # any value not between but not equal to either breakpoint
q_length = (
pi_breakpoints[breakpoint_idx] - pi_breakpoints[breakpoint_idx - 1]
)
tilde_graph = get_robust_graph(
input_graph, pi_star=pi_star, q_tilde=q_tilde
)
ecount_data.append(count_like_to_like(tilde_graph))
res = zeros(total_nodes)
histogram_counts = array(
[y[2] for y in tilde_graph.degree_distribution().bins()]
)
res[0 : histogram_counts.shape[0]] = histogram_counts
worst_case_pmf += q_length * res / total_nodes
with open(WORST_CASE_PATH, "wb") as worst_case_file:
dump(worst_case_pmf, worst_case_file)
with open(ECOUNT_PATH, "wb") as ecount_file:
dump(ecount_data, ecount_file)
def _plot_cdf(
input_data: NDArray[float64], output_label: str, input_data_range: ndarray
) -> None:
cdf: NDArray[float64] = cumsum(input_data)
plot(input_data_range, cdf, label=output_label)
def graph_degree_distribution_cdf(input_graph: Graph, data_file: Path) -> None:
"""
Create a graph of cumulative distribution function of degrees.
Corresponds to Figure 15 of Management Science paper.
"""
total_nodes = input_graph.vcount()
if not isinstance(total_nodes, int):
raise ValueError("Unexpected type returned from `igraph.Graph.vcount()")
data_range = arange(total_nodes)
original_res = zeros(total_nodes)
original_histogram_counts = [
y[2] for y in input_graph.degree_distribution().bins()
] # default degree type is 'all'
original_res[0 : len(original_histogram_counts)] = original_histogram_counts
original_data: NDArray[float64] = original_res / total_nodes
with open(data_file, "rb") as input_file:
worst_case_data: NDArray[float64] = load(input_file)
_plot_cdf(
original_data,
r"$\tilde{c} \sim $base $ \mathtt{polblogs}$",
data_range,
)
_plot_cdf(worst_case_data, r"$\tilde{c} \sim \theta^{*}$", data_range)
legend()
xlabel("Degree")
ylabel("Probability")
title(r"Cumulative Distribution of $\tilde{D} = deg(\tilde{v}_{\tilde{c}})$")
savefig(PAPER_MS_OUTPUT_FOLDER / "cdfs.png", dpi=300)
def make_ecount_table(input_graph: Graph, ecount_data_file: Path) -> None:
"""Create a table of edgetypes."""
original_etypes = count_like_to_like(input_graph)
with open(ecount_data_file, "rb") as input_file:
robust_ecount_data = load(input_file)
greedy_seeds = accelgreedy(input_graph, 40, SolveMethod.correlation_robust)[0]
pi_star_tuple = get_pi_star(input_graph, greedy_seeds)
pi_breakpoints = sorted(set(x[1] for x in pi_star_tuple))
q_lengths: list[float] = []
for breakpoint_idx, _ in enumerate(pi_breakpoints[:-1], start=1):
q_length = pi_breakpoints[breakpoint_idx] - pi_breakpoints[breakpoint_idx - 1]
q_lengths.append(q_length)
robust_ratio: float = 0.0
robust_ecount = {x: 0 for x in ((0, 0), (0, 1), (1, 0), (1, 1))}
for q_len, robust_edata in zip(q_lengths, robust_ecount_data):
for e_type in robust_ecount:
robust_ecount[e_type] += q_len * robust_edata[e_type]
for homophilic_type in [(0, 0), (1, 1)]:
robust_ratio += q_len * (
robust_edata[homophilic_type] / sum(robust_edata.values())
)
with open(
PAPER_MS_OUTPUT_FOLDER / "homophily.csv",
mode="w",
newline="",
encoding="utf-8",
) as csv_file:
csv_writer = writer(csv_file)
csv_writer.writerow(
[
"E[R->R]",
"E[D->D]",
"E[R->D]",
"E[D->R]",
"E[((R->R) + E(D->D)) / # edges]",
]
)
csv_writer.writerow(
[
original_etypes[(0, 0)],
original_etypes[(1, 1)],
original_etypes[(0, 1)],
original_etypes[(1, 0)],
(original_etypes[(0, 0)] + original_etypes[(1, 1)])
/ input_graph.ecount(),
]
)
csv_writer.writerow(
[
robust_ecount[(0, 0)],
robust_ecount[(1, 1)],
robust_ecount[(0, 1)],
robust_ecount[(1, 0)],
robust_ratio,
]
)
if __name__ == "__main__":
# Create folders if they do not exist
for fold in (
TSV_FOLDER,
CONV_CVAR_OUT_PATH,
PAPER_MS_OUTPUT_FOLDER,
AMAZON_RAW_OUTPUTS,
AMAZON_PAPER_OUTPUTS,
):
fold.mkdir(parents=True, exist_ok=True)
# Check required executables exist
executable_check()
# Gather data
get_data(MS_METHODS_USED)
# Read in graphs
neurips_graph_dict = get_all_graphs("neurips")
ms_graph_dict = get_all_graphs("ms")
# Summary stuff
make_summary_csv(neurips_graph_dict)
get_dataset_graph_summaries(neurips_graph_dict)
get_heterogenous_seed_summaries()
plot_compute_times()
plot_hists(neurips_graph_dict)
plot_expected_influence_graphs()
# polblogs graphs
polblogs = {
polblogs_edge: ms_graph_dict[GraphType.polblogs, polblogs_edge]
for polblogs_edge in HETEDGEWEIGHT
}
# amazon graphs
make_genre_csv()
amazon = {
amazon_edge: ms_graph_dict[GraphType.amazon, amazon_edge]
for amazon_edge in AMAZON_EDGES
}
# do convex combination greedy
print("Starting to get amazon convex combination data.")
for amazon_edge in AMAZON_EDGES:
amazon_tsv = get_tsv_path(GraphType.amazon, amazon_edge)
if not amazon_tsv.exists():
graph_to_tsv(amazon[amazon_edge])
get_cvar_conv_data(amazon[amazon_edge])
get_amazon_est_data(amazon[amazon_edge])
tabulate_conv_data(amazon[amazon_edge])
print("Finished getting amazon convex combination data.")
# amazon genre
genre_names, genre_dict = get_genres()
for amazon_edge in AMAZON_EDGES:
all_greedy, greedy_lambda_dict = get_amazon_greedy_seeds(amazon_edge)
get_greedy_genres(
amazon_edge, all_greedy, greedy_lambda_dict, genre_names, genre_dict
)
# Not output in final paper
get_genre_similarity(amazon[HetEdgeWeightType.amazonlow], genre_dict)
# polblogs conv, cvar data
# Ensure necessary tsvs exist
polblog_tsvs = {
HetEdgeWeightType.uniform: get_tsv_path(
GraphType.polblogs, HetEdgeWeightType.uniform
),
HetEdgeWeightType.trivalency: get_tsv_path(
GraphType.polblogs, HetEdgeWeightType.trivalency
),
}
for polblog_edge_type, polblog_tsv in polblog_tsvs.items():
if not polblog_tsv.exists():
graph_to_tsv(polblogs[polblog_edge_type])
for cvar_edge in CVAR_EDGES:
get_cvar_conv_data(polblogs[cvar_edge])
# make summary for convex and CVaR experiments
make_cvar_conv_summary(PAPER_MS_OUTPUT_FOLDER / CVAR_CONV_SUMMARY_PATH, polblogs)
# get solutions from summary
conv_cvar_solns = get_seeds_from_summary()
# tabulate alpha comparison graphs for certain greedy solutions
for cvar_edge, cvar_alphas in zip(CVAR_EDGES, (ALPHAS, TRIVALENCY_ALPHAS)):
tabulate_alpha_greedy_compare(polblogs[cvar_edge], conv_cvar_solns, cvar_alphas)
# homophily investigations
# Output in appendix
get_homophily_data(polblogs[HetEdgeWeightType.weightedcascade])
graph_degree_distribution_cdf(
polblogs[HetEdgeWeightType.weightedcascade], WORST_CASE_PATH
)
make_ecount_table(polblogs[HetEdgeWeightType.weightedcascade], ECOUNT_PATH)
# find optimal for small example
get_small_example_data()
analyse_small_example()
plot_small_example()
print("Finished running script.")