This repository has been archived by the owner on Jul 7, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcvar.py
105 lines (86 loc) · 2.61 KB
/
cvar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""Module containing all CVaR calculation logic."""
from igraph import Graph
from numpy import asarray, maximum, ndarray
from config import DISTMAT
def get_phi_sorted(
input_graph: Graph,
input_seed_set: set[int],
dist_mat: DISTMAT | None = None,
) -> list[float]:
"""Calculate phi.
Uses :py:meth:`~igraph .GraphBase.distances` method
with :math:`1-p` as the pairwise distances.
"""
if dist_mat is None:
dist_mat = asarray(input_graph.distances(weights="q"))
phi_sorted: list[float] = sorted(dist_mat[list(input_seed_set), :].min(axis=0))
return phi_sorted
def d_func(input_tau: int, input_seed_set: set[int], phi_sorted: list[float]) -> float:
"""
Calculate d.
d is defined in the paper in Lemma 3.
"""
ls_ = len(input_seed_set)
if input_tau <= ls_:
return 0
# else
# -1 correction due to 0-indexing
return min(phi_sorted[input_tau - 1], 1)
def var(
input_graph: Graph,
alpha: float,
input_seed_set: set[int],
phi_sorted: list[float],
) -> int:
"""
Calculate Value at Risk corresponding to worst case CVaR.
Value at Risk (VaR) is :math:`\\tau^{*}\\left( \\mathcal{S}\\right)`.
"""
z__ = len(input_seed_set)
cur_val = d_func(z__, input_seed_set, phi_sorted)
while cur_val <= alpha:
z__ += 1
cur_val = d_func(z__, input_seed_set, phi_sorted)
if alpha < d_func(z__, input_seed_set, phi_sorted):
z__ = z__ - 1
if z__ > input_graph.vcount():
z__ = input_graph.vcount()
return z__
def cvar(
input_graph: Graph,
input_alpha: float,
input_seed_set: list[int],
dist_mat: DISTMAT | None = None,
) -> float:
"""
Calculate worst-case Conditional Value at Risk (CVaR).
CVaR is calculated with the following formula
.. math::
f(S) =
\\sum_{i\\in V}\\left(\\alpha-\\phi_{i}(S)\\right)^{+}/\\alpha
"""
len_seed = len(input_seed_set)
if len_seed == 0:
return 0
if dist_mat is None:
dist_mat = asarray(input_graph.distances(weights="q"))
phi: ndarray = dist_mat[list(input_seed_set), :].min(axis=0)
return maximum(input_alpha - phi, 0).sum() / input_alpha
def marg_dro_cvar(
input_graph: Graph,
input_alpha: float,
current_seed_set: list[int],
prev_cvar: float,
seed_to_add: int,
dist_mat: DISTMAT | None = None,
) -> float:
"""Calculate marginal CVaR gained from candidate seed."""
return (
cvar(
input_graph,
input_alpha,
current_seed_set + [seed_to_add],
dist_mat=dist_mat,
)
- prev_cvar
)