This repository has been archived by the owner on Jul 7, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv.py
348 lines (320 loc) · 10.5 KB
/
conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
"""
Contains interfacing logic with the C++ convex combination greedy program.
Most of the computation is done on the C++ side.
"""
from os import name
from pathlib import Path
from pprint import pprint
from subprocess import check_output
from time import perf_counter
from typing import cast
from igraph import Graph
from numpy import asarray
from config import (
CONV_GREED_EXE_NAME,
CVAR_EST_EXE_NAME,
CVAR_GREED_EXE_NAME,
DISTMAT,
GRT,
PMC_EST_EXE_NAME,
PMC_GREED_EXE_NAME,
)
from cvar import cvar, marg_dro_cvar
from graph_functions import get_tsv_path
from pmc import all_pmc_inf_est, pmc_inf_est
def conv(
seed_set: list[int],
conv_graph: Graph,
conv_lambda: float,
conv_alpha: float,
tsv_path: Path,
dist_mat: DISTMAT | None = None,
) -> float:
"""
Compute convex combination objective.
conv_lambda: Proportion of objective function which comes from
independent cascade.
conv_alpha: CVaR parameter
"""
return conv_lambda * pmc_inf_est(tsv_path, seed_set) + (1 - conv_lambda) * cvar(
conv_graph, conv_alpha, seed_set, dist_mat=dist_mat
)
def marg_conv(
seed_set: list[int],
conv_graph: Graph,
conv_lambda: float,
conv_alpha: float,
tsv_path: Path,
prev_obj_val: float,
dist_mat: DISTMAT | None = None,
):
"""Compute convex combination objective."""
return (
conv(
seed_set,
conv_graph,
conv_lambda,
conv_alpha,
tsv_path,
dist_mat=dist_mat,
)
- prev_obj_val
)
def marg_conv_est(
input_graph: Graph,
input_seed_set: list[int],
inp_alpha: float,
inp_lambda: float,
tsv_path: Path,
) -> tuple[list[float], list[float]]:
"""
Python CVaR + C++ Pruned Monte Carlo implementation.
For testing out values.
"""
num_seeds = len(input_seed_set)
if inp_lambda > 0:
pmc_marg_gain, pmc_compute_times = all_pmc_inf_est(tsv_path, input_seed_set)
else:
pmc_marg_gain = [0] * num_seeds
pmc_compute_times = [0] * num_seeds
if inp_lambda < 1:
cvar_start = perf_counter()
cur_seed_set: list[int] = []
cumulative_cvar = 0.0
dist_mat: DISTMAT = asarray(input_graph.distances(weights="q"))
cvar_marg: list[float] = []
cvar_compute_times: list[float] = []
for seed in input_seed_set:
marg_cvar = marg_dro_cvar(
input_graph,
inp_alpha,
cur_seed_set,
cumulative_cvar,
seed,
dist_mat=dist_mat,
)
cur_seed_set.append(seed)
cumulative_cvar += marg_cvar
cvar_marg.append(marg_cvar)
cvar_compute_times.append(perf_counter() - cvar_start)
else:
cvar_marg = [0] * num_seeds
cvar_compute_times = [0] * num_seeds
total_marg_gain: list[float] = []
total_compute_time: list[float] = []
for pmc_gain, cvar_gain in zip(pmc_marg_gain, cvar_marg):
total_marg_gain.append(inp_lambda * pmc_gain + (1 - inp_lambda) * cvar_gain)
for pmc_compute_time, cvar_compute_time in zip(
pmc_compute_times, cvar_compute_times
):
total_compute_time.append(pmc_compute_time + cvar_compute_time)
return (total_marg_gain, total_compute_time)
def _get_output_from_program(input_program: str, *args) -> GRT:
"""
Get a tuple of lists from programs in standardised way.
Private helper function.
"""
if name == "posix": # windows vs linux
input_program = "./" + input_program
program_output = cast(bytes, check_output(str(x) for x in (input_program, *args))) # type: ignore
program_output = filter(
None,
program_output.decode("utf-8").replace("\r", "").replace("\t", " ").split("\n"),
)
seed_list: list[int] = []
marg_gain_list: list[float] = []
compute_time_list: list[float] = []
for output in program_output:
seed, marg_gain, compute_time = output.split()
seed_list.append(int(seed))
marg_gain_list.append(float(marg_gain))
compute_time_list.append(float(compute_time))
return (seed_list, marg_gain_list, compute_time_list)
def conv_est(
input_seed_file_path: Path,
input_tsv: Path,
est_lambda: float,
input_alpha: float,
) -> tuple[list[float], list[float]]:
"""
Estimate convex combination of IC and CVaR objective value function.
Uses the C++ interface.
"""
num_seeds = 0
with open(input_seed_file_path, encoding="utf-8") as io_obj:
num_seeds = len((io_obj.read()).split())
if est_lambda > 0:
_, pmc_marg, pmc_compute_time = _get_output_from_program(
PMC_EST_EXE_NAME, input_tsv, input_seed_file_path, 10000, 0
)
else:
pmc_marg = [0] * num_seeds
pmc_compute_time = [0] * num_seeds
if est_lambda < 1:
_, cvar_marg, cvar_compute_time = _get_output_from_program(
CVAR_EST_EXE_NAME,
input_tsv,
input_seed_file_path,
input_alpha,
)
else:
cvar_marg = [0] * num_seeds
cvar_compute_time = [0] * num_seeds
total_marg = [
est_lambda * pmc_contribution + (1 - est_lambda) * cvar_contribution
for (pmc_contribution, cvar_contribution) in zip(pmc_marg, cvar_marg)
]
total_compute_time = [
pmc_contribution + cvar_contribution
for (pmc_contribution, cvar_contribution) in zip(
pmc_compute_time, cvar_compute_time
)
]
return (total_marg, total_compute_time)
def conv_greed(
inp_graph: Graph,
input_k: int,
inp_alpha: float,
inp_lambda: float,
inp_seed_set_size: int = 10000,
) -> GRT:
"""Interface C++ program to run greedy pruned Monte Carlo algorithm."""
if input_k == 0:
return ([], [], [])
if 0 < inp_lambda < 1:
exe_str = CONV_GREED_EXE_NAME
elif inp_lambda == 0:
exe_str = CVAR_GREED_EXE_NAME
elif inp_lambda == 1:
exe_str = PMC_GREED_EXE_NAME
else:
raise ValueError("Lambda value not appropriate.")
input_tsv_path = get_tsv_path(inp_graph["type"], inp_graph["edge_type"])
if 0 < inp_lambda < 1:
return _get_output_from_program(
exe_str,
input_tsv_path,
input_k,
inp_seed_set_size, # 10000 simulations
0, # seed delta
inp_alpha,
inp_lambda,
)
elif inp_lambda == 1:
return _get_output_from_program(
exe_str,
input_tsv_path,
input_k,
inp_seed_set_size, # 10000 simulations
0, # seed delta
)
elif inp_lambda == 0:
return _get_output_from_program(
exe_str,
input_tsv_path,
input_k,
inp_alpha,
)
else:
raise ValueError("Lambda value not appropriate.")
def _verbose_output(
verbosity_setting: int,
input_k: int,
current_solution: list[int],
to_be_added: int,
current_value: float,
compute_time: float,
) -> None:
"""Function for outputting to stdout."""
if verbosity_setting > 1:
print(
f"When k = {input_k}, seed to be added is {to_be_added}, "
f"with value {current_value}. Compute time = {compute_time}s"
)
if (verbosity_setting > 0) and (not (input_k + 1) % 5):
print(f"When k = {input_k}, solution = ", end="")
pprint(current_solution, compact=True)
def accelgreedy_conv(
input_graph: Graph,
input_tsv: Path,
desired_size: int,
input_alpha: float,
input_lambda: float,
verbosity: int = 0,
) -> GRT:
"""
Run the CELF algorithm.
This runs the algorithm for the convex combination of both
independent cascade and CVaR maximization problem.
Not used because of speed.
"""
start_time = perf_counter()
greedy_solution: list[int] = []
marg_gain_output: list[float] = []
compute_times: list[float] = []
if desired_size == 0:
return ([], [], [])
graph_nodes: list[int] = [n.index for n in input_graph.vs()]
# Build a distance matrix
# This speeds up the expected influence calculation
dist_mat: DISTMAT = asarray(input_graph.distances(weights="q"))
marg_gain_list: list[float] = [
input_lambda * pmc_inf_est(input_tsv, [node])
+ (1 - input_lambda) * cvar(input_graph, input_alpha, [node], dist_mat=dist_mat)
for node in graph_nodes
]
# Sort all nodes by their marginal gains
sorted_list: list[tuple[int, float]] = sorted(
zip(graph_nodes, marg_gain_list), key=lambda x: x[1], reverse=True
)
# First seed, always optimal
compute_times.append(perf_counter() - start_time)
greedy_to_add = sorted_list[0][0]
cur_val: float = sorted_list[0][1]
greedy_solution.append(greedy_to_add)
marg_gain_output.append(cur_val)
sorted_list.pop(0)
for k in range(1, desired_size):
# Finding next seed with highest marginal gain
need_to_re_eval: bool = True
cur_cvar = cvar(input_graph, input_alpha, greedy_solution, dist_mat=dist_mat)
cur_ic = pmc_inf_est(input_tsv, greedy_solution)
while need_to_re_eval:
cur_node = sorted_list[0][0]
# update marginal spread
sorted_list[0] = (
cur_node,
input_lambda
* (pmc_inf_est(input_tsv, greedy_solution + [cur_node]) - cur_ic)
+ (1 - input_lambda)
* marg_dro_cvar(
input_graph,
input_alpha,
greedy_solution,
cur_cvar,
cur_node,
dist_mat=dist_mat,
),
)
sorted_list = sorted(sorted_list, key=lambda x: x[1], reverse=True)
need_to_re_eval = sorted_list[0][0] != cur_node
# Found highest marginal gain
comp_time = perf_counter() - start_time
compute_times.append(comp_time)
greedy_to_add = sorted_list[0][0]
greedy_solution.append(greedy_to_add)
marg_gain = sorted_list[0][1]
cur_val += marg_gain
marg_gain_output.append(marg_gain)
sorted_list.pop(0)
# Verbose output
if verbosity:
_verbose_output(
verbosity,
k,
greedy_solution,
greedy_to_add,
cur_val,
comp_time,
)
return (greedy_solution, marg_gain_output, compute_times)