-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathval_pc.py
104 lines (82 loc) · 3.03 KB
/
val_pc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import argparse
import logging
import os
import munch
import torch
import yaml
from tqdm import tqdm
import numpy as np
import logging
import torch
from tqdm import tqdm
from dataset_pc.dataset import MVP_CP
from utils.model_utils import calc_cd
import argparse
import torch
import logging
import importlib
import random
import munch
import yaml
import os
import sys
import argparse
from dataset_pc.dataset import MVP_CP
import numpy as np
from tqdm import tqdm
from time import time
import time as timetmp
from utils.model_utils import *
from utils.train_utils import AverageValueMeter
def val():
# Enable the inbuilt cudnn auto-tuner to find the best algorithm to use
torch.backends.cudnn.benchmark = True
test_dataset_loader = MVP_CP(prefix="test")
test_data_loader = torch.utils.data.DataLoader(test_dataset_loader, batch_size=args.batch_size,
shuffle=False, num_workers=args.workers)
logging.info('Length of test dataset:%d', len(test_dataset_loader))
if not args.manual_seed:
seed = random.randint(1, 10000)
else:
seed = int(args.manual_seed)
logging.info('Random Seed: %d' % seed)
random.seed(seed)
torch.manual_seed(seed)
model_module = importlib.import_module('.%s' % args.model_name, 'models')
net = torch.nn.DataParallel(model_module.Model(args))
net.cuda()
if hasattr(model_module, 'weights_init'):
net.module.apply(model_module.weights_init)
ckpt = torch.load(args.load_model)
net.module.load_state_dict(ckpt['net_state_dict'])
logging.info("%s's previous weights loaded." % args.model_name)
# Switch models to evaluation mode
net.eval()
# The inference loop
n_samples = len(test_data_loader)
test_losses = AverageValueMeter()
with tqdm(test_data_loader) as t:
for model_idx, data in enumerate(t):
with torch.no_grad():
category, label, partial, gt = data
partial = partial.float().cuda() # B, 2048, 3
gt = gt.float().cuda() # B, 2048, 3
label = label.float().cuda()
_, _, cd_t, _ = net(partial, gt, label)
cd_t = cd_t.mean().item() * 1e4
test_losses.update(cd_t, partial.shape[0])
t.set_description('Test[%d/%d] Metrics = %.4f' %
(model_idx + 1, n_samples, cd_t))
print('============================ TEST RESULTS ============================')
print('Overall cd: ', (test_losses.avg))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Train config file')
parser.add_argument('-c', '--config', help='path to config file', required=True)
parser.add_argument('-gpu', '--gpu_id', help='gpu_id', required=True)
arg = parser.parse_args()
config_path = arg.config
args = munch.munchify(yaml.safe_load(open(config_path)))
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(arg.gpu_id)
print('Using gpu:' + str(arg.gpu_id))
val()