-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathdata_loader.py
149 lines (122 loc) · 4.87 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from helper import *
from torch.utils.data import Dataset
class TrainDataset(Dataset):
"""
Training Dataset class.
Parameters
----------
triples: The triples used for training the model
params: Parameters for the experiments
Returns
-------
A training Dataset class instance used by DataLoader
"""
def __init__(self, triples, params):
self.triples = triples
self.p = params
self.entities = np.arange(self.p.num_ent, dtype=np.int32)
def __len__(self):
return len(self.triples)
def __getitem__(self, idx):
ele = self.triples[idx]
triple, label, sub_samp = torch.LongTensor(ele['triple']), np.int32(ele['label']), np.float32(ele['sub_samp'])
trp_label = self.get_label(label)
if self.p.lbl_smooth != 0.0:
trp_label = (1.0 - self.p.lbl_smooth) * trp_label + (1.0 / self.p.num_ent)
if self.p.strategy == 'one_to_n':
return triple, trp_label, None, None
elif self.p.strategy == 'one_to_x':
sub_samp = torch.FloatTensor([sub_samp])
neg_ent = torch.LongTensor(self.get_neg_ent(triple, label))
return triple, trp_label, neg_ent, sub_samp
else:
raise NotImplementedError
# return triple, trp_label, None, None
@staticmethod
def collate_fn(data):
triple = torch.stack([_[0] for _ in data], dim=0)
trp_label = torch.stack([_[1] for _ in data], dim=0)
# triple: (batch-size) * 3(sub, rel, -1) trp_label (batch-size) * num entity
# return triple, trp_label
if not data[0][2] is None: # one_to_x
neg_ent = torch.stack([_[2] for _ in data], dim=0)
sub_samp = torch.cat([_[3] for _ in data], dim=0)
return triple, trp_label, neg_ent, sub_samp
else:
return triple, trp_label
# def get_neg_ent(self, triple, label):
# def get(triple, label):
# pos_obj = label
# mask = np.ones([self.p.num_ent], dtype=np.bool)
# mask[label] = 0
# neg_ent = np.int32(
# np.random.choice(self.entities[mask], self.p.neg_num - len(label), replace=False)).reshape([-1])
# neg_ent = np.concatenate((pos_obj.reshape([-1]), neg_ent))
#
# return neg_ent
#
# neg_ent = get(triple, label)
# return neg_ent
def get_neg_ent(self, triple, label):
def get(triple, label):
if self.p.strategy == 'one_to_x':
pos_obj = triple[2]
mask = np.ones([self.p.num_ent], dtype=np.bool)
mask[label] = 0
neg_ent = np.int32(np.random.choice(self.entities[mask], self.p.neg_num, replace=False)).reshape([-1])
neg_ent = np.concatenate((pos_obj.reshape([-1]), neg_ent))
else:
pos_obj = label
mask = np.ones([self.p.num_ent], dtype=np.bool)
mask[label] = 0
neg_ent = np.int32(
np.random.choice(self.entities[mask], self.p.neg_num - len(label), replace=False)).reshape([-1])
neg_ent = np.concatenate((pos_obj.reshape([-1]), neg_ent))
if len(neg_ent) > self.p.neg_num:
import pdb;
pdb.set_trace()
return neg_ent
neg_ent = get(triple, label)
return neg_ent
def get_label(self, label):
# y = np.zeros([self.p.num_ent], dtype=np.float32)
# for e2 in label: y[e2] = 1.0
# return torch.FloatTensor(y)
if self.p.strategy == 'one_to_n':
y = np.zeros([self.p.num_ent], dtype=np.float32)
for e2 in label: y[e2] = 1.0
elif self.p.strategy == 'one_to_x':
y = [1] + [0] * self.p.neg_num
else:
raise NotImplementedError
return torch.FloatTensor(y)
class TestDataset(Dataset):
"""
Evaluation Dataset class.
Parameters
----------
triples: The triples used for evaluating the model
params: Parameters for the experiments
Returns
-------
An evaluation Dataset class instance used by DataLoader for model evaluation
"""
def __init__(self, triples, params):
self.triples = triples
self.p = params
def __len__(self):
return len(self.triples)
def __getitem__(self, idx):
ele = self.triples[idx]
triple, label = torch.LongTensor(ele['triple']), np.int32(ele['label'])
label = self.get_label(label)
return triple, label
@staticmethod
def collate_fn(data):
triple = torch.stack([_[0] for _ in data], dim=0)
label = torch.stack([_[1] for _ in data], dim=0)
return triple, label
def get_label(self, label):
y = np.zeros([self.p.num_ent], dtype=np.float32)
for e2 in label: y[e2] = 1.0
return torch.FloatTensor(y)