-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
57 lines (50 loc) · 1.87 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import csv
import cv2
import numpy as np
from keras.models import Sequential, Model
from keras.layers import Flatten, Dense, Lambda
from keras.layers.convolutional import Cropping2D, Convolution2D
import matplotlib.pyplot as plt
lines = []
with open('./input/driving_log.csv') as csvfile:
reader = csv.reader(csvfile)
for line in reader:
lines.append(line)
images = []
measurements = []
for line in lines:
for i in range(3):
source_path = line[i]
filename = source_path.split('\\')[-1]
current_path = './input/IMG/' + filename
image = cv2.imread(current_path)
images.append(image)
correction = 0.2
measurement = float(line[3])
measurements.append(measurement)
measurements.append(measurement+correction)
measurements.append(measurement-correction)
augmented_images, augmented_measurements = [], []
for image, measurement in zip(images, measurements):
augmented_images.append(image)
augmented_measurements.append(measurement)
augmented_images.append(cv2.flip(image,1))
augmented_measurements.append(float(measurement)*-1.0)
X_train = np.array(augmented_images)
y_train = np.array(augmented_measurements)
model = Sequential()
model.add(Lambda(lambda x: x / 255.0 - 0.5, input_shape=(160,320,3)))
model.add(Cropping2D(cropping=((70,25),(0,0))))
model.add(Convolution2D(24,5,5,subsample=(2,2), activation="relu"))
model.add(Convolution2D(36,5,5,subsample=(2,2), activation="relu"))
model.add(Convolution2D(48,5,5,subsample=(2,2), activation="relu"))
model.add(Convolution2D(64,3,3, activation="relu"))
model.add(Convolution2D(64,3,3, activation="relu"))
model.add(Flatten())
model.add(Dense(100))
model.add(Dense(50))
model.add(Dense(10))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
model.fit(X_train, y_train, validation_split=0.2, shuffle=True, nb_epoch=3, verbose =1)
model.save('model.h5')