-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlayerNN.py
44 lines (32 loc) · 895 Bytes
/
layerNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
# sigmoid function
def nonlin(x, deriv=False):
if (deriv == True):
return x * (1 - x)
return 1 / (1 + np.exp(-x))
# input dataset
X = np.array([[0, 0, 1],
[0, 1, 1],
[1, 0, 1],
[1, 1, 1]])
# output dataset
y = np.array([[0, 0, 1, 1]]).T
# seed random numbers to make calculation
# deterministic (just a good practice)
np.random.seed(1)
# initialize weights randomly with mean 0
syn0 = 2 * np.random.random((3, 1)) - 1
print(syn0)
for iter in range(10000):
# forward propagation
l0 = X
l1 = nonlin(np.dot(l0, syn0))
# how much did we miss?
l1_error = y - l1
# multiply how much we missed by the
# slope of the sigmoid at the values in l1
l1_delta = l1_error * nonlin(l1, True)
# update weights
syn0 += np.dot(l0.T, l1_delta)
print("Output After Training:")
print(l1)