-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathevaluation.py
85 lines (65 loc) · 2.47 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import random
import torch
import wandb
def generate_passkey_prompt(passkey, context_length):
"""
Generate a prompt with a hidden passkey for the retrieval task.
"""
filler = "The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again. "
filler_tokens = len(filler.split())
passkey_position = random.randint(filler_tokens, context_length - filler_tokens)
pre_passkey = filler * (passkey_position // filler_tokens)
post_passkey = filler * (
(context_length - passkey_position - len(passkey) - filler_tokens)
// filler_tokens
)
prompt = (
f"{pre_passkey}The pass key is {passkey}. Remember it. {passkey} is the pass key. "
f"{post_passkey}What is the pass key? The pass key is"
)
return prompt
def passkey_retrieval_test(model, tokenizer, max_length, num_trials=10):
"""
Perform the passkey retrieval test on the model.
Args:
model: The LongRoPE model to evaluate.
tokenizer: Tokenizer for encoding/decoding text.
max_length: Maximum sequence length to test.
num_trials: Number of trials to run for each context length.
Returns:
dict: A dictionary of accuracies for each tested context length.
"""
model.eval()
accuracies = {}
for length in [
4096,
8192,
16384,
32768,
65536,
131072,
262144,
524288,
1048576,
2097152,
]:
if length > max_length:
break
correct_retrievals = 0
for _ in range(num_trials):
passkey = "".join([str(random.randint(0, 9)) for _ in range(5)])
prompt = generate_passkey_prompt(passkey, length)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
output = model(input_ids)
generated_ids = output.argmax(dim=-1)
generated_text = tokenizer.decode(generated_ids[0])
if passkey in generated_text:
correct_retrievals += 1
accuracies[length] = correct_retrievals / num_trials
return accuracies
def evaluate_passkey_retrieval(model, tokenizer, max_length):
accuracies = passkey_retrieval_test(model, tokenizer, max_length)
for length, accuracy in accuracies.items():
print(f"Passkey retrieval accuracy at {length} tokens: {accuracy:.2f}")
wandb.log({f"passkey_retrieval_{length}": accuracy})