-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
99 lines (79 loc) · 3.16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from flask import request, make_response
from flask.ext.restplus import Resource
from pybrain.tools.customxml import NetworkReader
from api import api, app, tsp
from serializers import tsp_model_input, tsp_model_output
from graph import Graph, convert_output
N = 6
net = NetworkReader.readFrom('neural_network.xml')
@app.after_request
def after_request(response):
response.headers.add('Access-Control-Allow-Origin', '*')
response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization')
response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE')
return response
@tsp.route('/')
class TodoList(Resource):
@api.expect(tsp_model_input)
@api.marshal_with(tsp_model_output, code=200)
def post(self):
# Get data
graph_json = request.get_json(force=True)
# Create graph
graph = Graph(N)
graph.graph = []
graph_points = graph_json.get('graph')
for point in sorted(graph_points, key=lambda graph_point: graph_point.get('id')):
graph.graph.append((point['x'], point['y']))
graph.compute_each_to_each()
graph.compute_tsp()
# Prepare input for neural network
input = ()
for j in range(N):
for k in range(N):
input += (graph.each_to_each[j][k],)
# Calculate proper output
output = [[] for x in range(N)]
for j in range(N):
output[j] = [[] for y in range(N)]
for j in range(N):
for k in range(N):
if graph.order_tsp[j] == k:
output[k][j] = 1
else:
output[k][j] = 0
# Calculate neural network output
net_output = net.activate(input)
net_output_array = [[] for x in range(N)]
for j in range(N):
net_output_array[j] = [[] for y in range(N)]
for j in range(N):
for k in range(N):
net_output_array[k][j] = net_output[j * N + k]
# Calculate order
order = convert_output(net_output, N)
# Original
original_len = 0
for j in range(N - 1):
original_len += graph.each_to_each[graph.order_tsp_list[j]][graph.order_tsp_list[j + 1]]
original_len += graph.each_to_each[graph.order_tsp_list[N - 1]][graph.order_tsp_list[0]]
# Compute
network_len = 0
for j in range(N - 1):
network_len += graph.each_to_each[order[j]][order[j + 1]]
network_len += graph.each_to_each[order[N - 1]][order[0]]
# Log
print('Original:', original_len, 'Network:', network_len, 'Error:', abs(original_len-network_len)/original_len*100, '%')
# Update order
graph.order_tsp_list = list(map(lambda x: x + 1, graph.order_tsp_list))
order = list(map(lambda x: x + 1, order))
# Send response
return {
'expected': output,
'net': net_output_array,
'expected_order': graph.order_tsp_list,
'net_order': order,
'net_error': abs(original_len-network_len)/original_len * 100
}
if __name__ == '__main__':
app.run(host='localhost', debug=False)