-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdafruit_MLX90395_Soft.cpp
194 lines (157 loc) · 5.09 KB
/
Adafruit_MLX90395_Soft.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/******************************************************************************
This is a library for the MLX90395 magnetometer.
Designed specifically to work with the MLX90395 breakout from Adafruit:
----> https://www.adafruit.com/products/4022
These sensors use I2C to communicate, 2 pins are required to interface.
Adafruit invests time and resources providing this open source code, please
support Adafruit and open-source hardware by purchasing products from
Adafruit!
Written by Kevin Townsend/ktown for Adafruit Industries.
MIT license, all text above must be included in any redistribution
*****************************************************************************/
#include "Adafruit_MLX90395_Soft.h"
Adafruit_MLX90395_Soft::Adafruit_MLX90395_Soft(void) {}
bool Adafruit_MLX90395_Soft::begin_I2C(uint8_t sda, uint8_t scl, uint8_t i2c_addr) {
_i2c_addr = i2c_addr;
_i2c = new SlowSoftI2CMaster(sda, scl, false);
_i2c->i2c_init();
return _init();
}
bool Adafruit_MLX90395_Soft::_init(void) {
if (!exitMode()) {
return false;}
delay(10);
if (!reset()) {
return false; }
delay(10);
_gain = getGain();
if (_gain == 8) { // default high field gain
_uTLSB = 7.14;
} else {
_uTLSB = 2.5; // medium field gain
}
_resolution = getResolution();
if (!readRegister(0x26, &uniqueID[0]) || !readRegister(0x27, &uniqueID[1]) ||
!readRegister(0x28, &uniqueID[2])) {
return false;
}
return true;
}
bool Adafruit_MLX90395_Soft::reset(void) {
return (command(MLX90395_REG_RT) == MLX90395_STATUS_RESET);
}
bool Adafruit_MLX90395_Soft::exitMode(void) {
// do once and ignore status
command(MLX90395_REG_EX);
return command(MLX90395_REG_EX) == 0;
}
bool Adafruit_MLX90395_Soft::readData(float *x, float *y, float *z) {
if (!startSingleMeasurement())
return false;
while (!readMeasurement(x, y, z))
delay(1);
return true;
}
bool Adafruit_MLX90395_Soft::readMeasurement(float *x, float *y, float *z) {
uint8_t rx[12] = {0}; // status, crc, X16, Y16, Z16, T16, V16
_i2c->i2c_start((_i2c_addr << 1) | I2C_WRITE);
_i2c->i2c_write(0x80);
_i2c->i2c_rep_start((_i2c_addr << 1) | I2C_READ);
for (int i = 0; i < 11; i++)
{
rx[i] = _i2c->i2c_read(0);
}
rx[11] = _i2c->i2c_read(1);
_i2c->i2c_stop();
// check status
if (rx[0] != MLX90395_STATUS_DRDY) {
return false;
}
int16_t xi, yi, zi;
// Convert data to uT and float.
xi = (rx[2] << 8) | rx[3];
yi = (rx[4] << 8) | rx[5];
zi = (rx[6] << 8) | rx[7];
*x = xi;
*y = yi;
*z = zi;
// multiply by gain & LSB
*x *= gainMultipliers[_gain] * _uTLSB;
*y *= gainMultipliers[_gain] * _uTLSB;
*z *= gainMultipliers[_gain] * _uTLSB;
return true;
}
bool Adafruit_MLX90395_Soft::startSingleMeasurement(void) {
return (command(MLX90395_REG_SM | 0x0F) == MLX90395_STATUS_SMMODE);
}
mlx90393_osr_t Adafruit_MLX90395_Soft::getOSR(void) {
uint16_t regValue;
readRegister(MLX90395_REG_2, ®Value);
return (mlx90393_osr_t)(regValue & 0x03);
}
bool Adafruit_MLX90395_Soft::setOSR(mlx90393_osr_t osrval) {
uint16_t regValue;
readRegister(MLX90395_REG_2, ®Value);
regValue |= osrval;
writeRegister(MLX90395_REG_2, regValue);
return true;
}
uint8_t Adafruit_MLX90395_Soft::getGain(void) {
uint16_t regValue;
readRegister(MLX90395_REG_0, ®Value);
return (regValue >> 4) & 0x0F;
}
bool Adafruit_MLX90395_Soft::setGain(uint8_t gainval) {
uint16_t regValue;
readRegister(MLX90395_REG_0, ®Value);
regValue |= gainval << 4;
writeRegister(MLX90395_REG_0, regValue);
return true;
}
mlx90393_res_t Adafruit_MLX90395_Soft::getResolution(void) {
uint16_t regValue;
readRegister(MLX90395_REG_2, ®Value);
return (mlx90393_res_t)((regValue >> 5) & 0x03);
}
bool Adafruit_MLX90395_Soft::setResolution(mlx90393_res_t resval) {
uint16_t regValue;
readRegister(MLX90395_REG_2, ®Value);
regValue |= resval << 5;
regValue |= resval << 7;
regValue |= resval << 9;
writeRegister(MLX90395_REG_2, regValue);
return true;
}
/****************************************************************/
uint8_t Adafruit_MLX90395_Soft::command(uint8_t cmd) {
uint8_t status;
_i2c->i2c_start_wait((_i2c_addr << 1) | I2C_WRITE);
_i2c->i2c_write(0x80);
_i2c->i2c_write(cmd);
_i2c->i2c_rep_start((_i2c_addr << 1) | I2C_READ);
status = _i2c->i2c_read(1);
_i2c->i2c_stop();
return status;
}
bool Adafruit_MLX90395_Soft::readRegister(uint8_t reg, uint16_t *data) {
_i2c->i2c_start((_i2c_addr << 1) | I2C_WRITE);
_i2c->i2c_write(reg << 1);
_i2c->i2c_rep_start((_i2c_addr << 1) | I2C_READ);
uint8_t upperBits = _i2c->i2c_read(0);
uint8_t lowerBits = _i2c->i2c_read(1);
*data = (uint16_t)((upperBits << 8) | lowerBits);
_i2c->i2c_stop();
return true;
}
bool Adafruit_MLX90395_Soft::writeRegister(uint8_t reg, uint16_t data) {
uint8_t upperBits = data >> 8;
uint8_t lowerBits = (data) & 0xFF;
_i2c->i2c_start((_i2c_addr << 1) | I2C_WRITE);
_i2c->i2c_write(reg << 1);
_i2c->i2c_write(upperBits);
_i2c->i2c_write(lowerBits);
_i2c->i2c_rep_start((_i2c_addr << 1) | I2C_READ);
_i2c->i2c_read(1);
_i2c->i2c_stop();
return true;
}