-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathablation.py
186 lines (161 loc) · 5.78 KB
/
ablation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# -*- coding: utf-8 -*-
"""
[Martinez-Gil2024] Augmenting the Interpretability of GraphCodeBERT for Code Similarity Tasks, arXiv preprint arXiv:2410.05275, 2024
@author: Jorge Martinez-Gil
"""
import os
from transformers import RobertaTokenizer, RobertaModel
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import numpy as np
import itertools
from scipy.spatial.distance import cosine
# Initialize GraphCodeBERT
tokenizer = RobertaTokenizer.from_pretrained("microsoft/graphcodebert-base")
model = RobertaModel.from_pretrained("microsoft/graphcodebert-base")
# Define the classical sorting algorithms
sorting_algorithms = {
"Bubble_Sort": """
def bubble_sort(arr):
n = len(arr)
for i in range(n):
for j in range(0, n-i-1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]
return arr
""",
"Selection_Sort": """
def selection_sort(arr):
for i in range(len(arr)):
min_idx = i
for j in range(i+1, len(arr)):
if arr[j] < arr[min_idx]:
min_idx = j
arr[i], arr[min_idx] = arr[min_idx], arr[i]
return arr
""",
"Insertion_Sort": """
def insertion_sort(arr):
for i in range(1, len(arr)):
key = arr[i]
j = i-1
while j >=0 and key < arr[j]:
arr[j + 1] = arr[j]
j -= 1
arr[j + 1] = key
return arr
""",
"Merge_Sort": """
def merge_sort(arr):
if len(arr) > 1:
mid = len(arr)//2
L = arr[:mid]
R = arr[mid:]
merge_sort(L)
merge_sort(R)
i = j = k = 0
while i < len(L) and j < len(R):
if L[i] < R[j]:
arr[k] = L[i]
i += 1
else:
arr[k] = R[j]
j += 1
k += 1
while i < len(L):
arr[k] = L[i]
i += 1
k += 1
while j < len(R):
arr[k] = R[j]
j += 1
k += 1
return arr
""",
"Quick_Sort": """
def partition(arr, low, high):
i = (low-1)
pivot = arr[high]
for j in range(low, high):
if arr[j] <= pivot:
i = i+1
arr[i], arr[j] = arr[j], arr[i]
arr[i+1], arr[high] = arr[high], arr[i+1]
return (i+1)
def quick_sort(arr, low, high):
if low < high:
pi = partition(arr, low, high)
quick_sort(arr, low, pi-1)
quick_sort(arr, pi+1, high)
return arr
"""
}
# Function to get token embeddings
def get_token_embeddings(code):
inputs = tokenizer(code, return_tensors="pt", max_length=512, truncation=True, padding=True)
outputs = model(**inputs)
token_embeddings = outputs.last_hidden_state.squeeze().detach().numpy()
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'].squeeze())
return token_embeddings, tokens
# Function to get pooled text embeddings
def get_text_embeddings(code):
inputs = tokenizer(code, return_tensors="pt", max_length=512, truncation=True, padding=True)
outputs = model(**inputs)
text_embedding = outputs.pooler_output.squeeze().detach().numpy() # Single vector for the text
return text_embedding
# Directory to save images
output_dir = "ablation_study_results"
os.makedirs(output_dir, exist_ok=True)
# Generate all possible pairs of sorting algorithms
algorithm_pairs = list(itertools.combinations(sorting_algorithms.keys(), 2))
# Ablation options
use_token_embeddings = True # Toggle between token embeddings and text embeddings
use_pca = True # Toggle between PCA and t-SNE
# Loop over each pair and generate the visualizations
for (algo1_name, algo2_name) in algorithm_pairs:
algo1_code = sorting_algorithms[algo1_name]
algo2_code = sorting_algorithms[algo2_name]
# Get embeddings for both algorithms
if use_token_embeddings:
algo1_embeddings, algo1_tokens = get_token_embeddings(algo1_code)
algo2_embeddings, algo2_tokens = get_token_embeddings(algo2_code)
all_embeddings = np.concatenate((algo1_embeddings, algo2_embeddings), axis=0)
labels = ["Token"] * len(algo1_tokens) + ["Token"] * len(algo2_tokens)
else:
algo1_embedding = get_text_embeddings(algo1_code)
algo2_embedding = get_text_embeddings(algo2_code)
all_embeddings = np.array([algo1_embedding, algo2_embedding])
labels = ["Text", "Text"]
# Dimensionality reduction
if use_pca:
reducer = PCA(n_components=2)
method_name = "PCA"
else:
reducer = TSNE(n_components=2, perplexity=30, n_iter=300)
method_name = "t-SNE"
embeddings_2d = reducer.fit_transform(all_embeddings)
# Plotting
plt.figure(figsize=(10, 8), dpi=300)
if use_token_embeddings:
plt.scatter(embeddings_2d[:len(algo1_tokens), 0],
embeddings_2d[:len(algo1_tokens), 1],
color='red', s=50, label=algo1_name, alpha=0.8)
plt.scatter(embeddings_2d[len(algo1_tokens):, 0],
embeddings_2d[len(algo1_tokens):, 1],
color='blue', s=50, label=algo2_name, alpha=0.8)
else:
plt.scatter(embeddings_2d[:, 0],
embeddings_2d[:, 1],
color=['red', 'blue'], s=100, alpha=0.8)
plt.title(f"{algo1_name} vs {algo2_name} ({method_name})")
plt.grid(False)
plt.legend()
output_file = os.path.join(output_dir, f"{algo1_name}_vs_{algo2_name}_{method_name}.png")
plt.savefig(output_file, format='png', dpi=300, bbox_inches='tight')
plt.close()
# Print cosine similarity for text embeddings
if not use_token_embeddings:
similarity = 1 - cosine(algo1_embedding, algo2_embedding)
print(f"Cosine similarity between {algo1_name} and {algo2_name}: {similarity:.4f}")
print("Ablation study completed. Results saved.")