-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_lm2tree_mp_end2end.py
483 lines (437 loc) · 22.9 KB
/
run_lm2tree_mp_end2end.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# coding: utf-8
from src.train_and_evaluate import *
from src.models import *
import time
import torch.optim
from src.load_data import *
from src.num_transfer import *
from src.expression_tree import *
from src.log_utils import *
from src.calculation import *
# from src.expressions_transfer import *
from src.data_utils import get_pretrained_embedding_weight, pad_seq
from transformers import BertTokenizer, AdamW
import argparse
from itertools import groupby
torch.cuda.set_device(0)
# USE_CUDA = torch.cuda.is_available()
# batch_size = 16
# grad_acc_steps = 8 # 使用grad_acc_steps步来完成batch_size的训练,每一步:batch_size // grad_acc_steps
# embedding_size = 128
# hidden_size = 768
# n_epochs = 80
# bert_learning_rate = 5e-5
# bert_path = "./pretrained_lm/chinese-bert-wwm"
# learning_rate = 1e-3
# weight_decay = 2e-5
# beam_size = 5
# beam_search = True
# fold_num = 5
# n_layers = 2
# drop_out = 0.5
# random_seed = 1
# var_nums = []
# dataset_name = "mawps"
# ckpt_dir = "Math23K"
# data_path = "../dataset/math23k/Math_23K.json"
parser = argparse.ArgumentParser()
parser.add_argument('--random_seed', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--grad_acc_steps', type=int, default=8)
parser.add_argument('--embedding_size', type=int, default=128)
parser.add_argument('--hidden_size', type=int, default=768)
parser.add_argument('--n_epochs', type=int, default=80)
parser.add_argument('--stage1_learning_rate', type=float, default=1e-5)
parser.add_argument('--bert_learning_rate', type=float, default=5e-5)
parser.add_argument('--bert_path', type=str, default="./pretrained_lm/chinese-bert-wwm")
parser.add_argument('--learning_rate', type=float, default=1e-3)
parser.add_argument('--stage1_weight_decay', type=float, default=5e-6)
parser.add_argument('--weight_decay', type=float, default=2e-5)
parser.add_argument('--enable_beam_search', action='store_true')
parser.add_argument('--beam_size', type=int, default=5)
parser.add_argument('--fold_num', type=int, default=5)
# parser.add_argument('--n_layers', type=int, default=1)
parser.add_argument('--drop_out', type=float, default=0.5)
parser.add_argument('--use_teacher_forcing', type=float, default=1.0)
parser.add_argument('--use_clip', action='store_true')
parser.add_argument('--gclip', type=float, default=0.0)
parser.add_argument('--dataset_name', type=str, default='Math23K')
args = parser.parse_args()
USE_CUDA = torch.cuda.is_available()
batch_size = args.batch_size # 16
grad_acc_steps = args.grad_acc_steps # 8 # 使用grad_acc_steps步来完成batch_size的训练,每一步:batch_size // grad_acc_steps
embedding_size = args.embedding_size # 128
hidden_size = args.hidden_size # 768
n_epochs = args.n_epochs # 80
stage1_learning_rate = args.stage1_learning_rate # 1e-5
bert_learning_rate = args.bert_learning_rate # 5e-5
bert_path = args.bert_path # "./pretrained_lm/chinese-bert-wwm"
learning_rate = args.learning_rate # 1e-3
weight_decay = args.weight_decay # 2e-5
stage1_weight_decay = args.stage1_weight_decay # 5e-6
beam_size = args.beam_size # 5
beam_search = args.enable_beam_search # True
fold_num = args.fold_num # 5
# n_layers = args.n_layers # 1
drop_out = args.drop_out # 0.5
random_seed = args.random_seed # 1
use_clip = args.use_clip
gclip = args.gclip # 0
var_nums = []
dataset_name = args.dataset_name # "mawps"
ckpt_dir = "Math23K"
data_path = "../dataset/math23k/Math_23K.json"
num_labels = 5 #category class number
use_sentence_index = True
aggregate_mode = 'mean' #'cls', 'mean', 'sep'
rnn_type = 'transformer'
if dataset_name == "Math23K":
var_nums = []
ckpt_dir = "Math23K_b2t"
bert_path = "./pretrained_lm/chinese-bert-wwm"
data_path = "./dataset/math23k/Math_23K.json"
elif dataset_name == "Math23K_char":
var_nums = []
ckpt_dir = "Math23K_char_b2t"
bert_path = "./pretrained_lm/chinese-bert-wwm"
data_path = "./dataset/math23k/Math_23K_char.json"
elif dataset_name == "ALG514":
var_nums = ['x','y']
ckpt_dir = "ALG514_b2t_mp1_cls_sep"
bert_path = "bert-base-uncased"
data_path = "./dataset/alg514/questions_normalization_v2.json"
stage1_path = "./benchmark_labels/label_v3_withQ.json"
elif dataset_name == "mawps":
var_nums = []
ckpt_dir = "mawps_b2t"
bert_path = "./pretrained_lm/bert-base-uncased"
data_path = "./dataset/mawps/mawps_combine.json"
elif dataset_name == "hmwp":
var_nums = ['x', 'y']
ckpt_dir = "hmwp_b2t"
bert_path = "./pretrained_lm/chinese-bert-wwm"
data_path = "./dataset/hmwp/hmwp.json"
elif dataset_name == "cm17k":
var_nums = ['x', 'y']
ckpt_dir = "cm17k_b2t"
bert_path = "./pretrained_lm/chinese-bert-wwm"
data_path = "./dataset/cm17k/questions.json"
ckpt_dir = ckpt_dir + '_' + str(n_epochs) + '_' + str(batch_size) + '_' + str(embedding_size) + '_' + str(hidden_size) + \
'stage1_blr' + str(stage1_learning_rate) + 'stage1_wd' + str(stage1_weight_decay) + \
'_blr' + str(bert_learning_rate) + '_lr' + str(learning_rate) + '_wd' + str(weight_decay) + '_do' + str(drop_out)
if beam_search:
ckpt_dir = ckpt_dir + '_' + 'beam_search' + str(beam_size)
save_dir = os.path.join("./models", ckpt_dir)
if not os.path.exists(save_dir):
os.mkdir(save_dir)
log_file = os.path.join(save_dir, 'log')
create_logs(log_file)
for fold_id in range(fold_num):
if not os.path.exists(os.path.join(save_dir, 'fold-'+str(fold_id))):
os.mkdir(os.path.join(save_dir, 'fold-'+str(fold_id)))
pairs = None
generate_nums = None
copy_nums = None
if dataset_name == "Math23K":
data = load_math23k_data(data_path)
pairs, generate_nums, copy_nums = transfer_math23k_num(data)
elif dataset_name == "Math23K_char":
data = load_math23k_data(data_path)
pairs, generate_nums, copy_nums = transfer_math23k_num(data)
elif dataset_name == "ALG514":
#data = load_alg514_data(data_path)
data = load_alg514_data(data_path, stage1_path)
pairs, generate_nums, copy_nums = transfer_alg514_num(data)
elif dataset_name == "mawps":
data = load_mawps_data(data_path)
pairs, generate_nums, copy_nums = transfer_mawps_num(data)
elif dataset_name == "hmwp":
data = load_hmwp_data(data_path)
pairs, generate_nums, copy_nums = transfer_hmwp_num(data)
elif dataset_name == "cm17k":
data = load_cm17k_data(data_path)
pairs, generate_nums, copy_nums = transfer_cm17k_num(data)
temp_pairs = []
for p in pairs:
ept = ExpressionTree()
ept.build_tree_from_infix_expression(p["out_seq"])
p['out_seq'] = ept.get_prefix_expression()
temp_pairs.append(p)
pairs = temp_pairs
fold_size = int(len(pairs) / fold_num)
fold_pairs = []
for split_fold in range((fold_num - 1)):
fold_start = fold_size * split_fold
fold_end = fold_size * (split_fold + 1)
fold_pairs.append(pairs[fold_start:fold_end])
fold_pairs.append(pairs[(fold_size * (fold_num - 1)):])
last_acc_fold = []
best_val_acc_fold = []
all_acc_data = []
for fold in range(fold_num):
pairs_tested = []
pairs_trained = []
for fold_t in range(fold_num):
if fold_t == fold:
pairs_tested += fold_pairs[fold_t]
else:
pairs_trained += fold_pairs[fold_t]
random.seed(random_seed)
import numpy as np
np.random.seed(random_seed)
torch.manual_seed(random_seed) # cpu
if USE_CUDA:
torch.cuda.manual_seed(random_seed) # gpu
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
bert_tokenizer = BertTokenizer.from_pretrained(bert_path)
bert_tokenizer.add_tokens(['[NUM]'])
_, output_lang, train_pairs, test_pairs = prepare_data(pairs_trained, pairs_tested, 5, generate_nums,
copy_nums, tree=True, use_lm=True, use_group_num=False)
embedding_weight = None
# Initialize models
stage1_encoder = Stage1_Encoder(num_labels, bert_tokenizer, use_sentence_index, aggregate_mode, rnn_type)
encoder = PLMMeanEncoderSeq_v2(model_path=bert_path)
predict = Prediction(hidden_size=hidden_size, op_nums=output_lang.n_words - copy_nums - 1 - len(generate_nums) - len(var_nums),
input_size=len(generate_nums) + len(var_nums), dropout=drop_out)
generate = GenerateNode(hidden_size=hidden_size, op_nums=output_lang.n_words - copy_nums - 1 - len(generate_nums) - len(var_nums),
embedding_size=embedding_size, dropout=drop_out)
merge = Merge(hidden_size=hidden_size, embedding_size=embedding_size, dropout=drop_out)
# the embedding layer is only for generated number embeddings, operators, and paddings
stage1_encoder_optimizer = AdamW(stage1_encoder.parameters(), lr=stage1_learning_rate, weight_decay=stage1_weight_decay)
encoder_optimizer = AdamW(encoder.parameters(), lr=bert_learning_rate, weight_decay=weight_decay)
predict_optimizer = torch.optim.Adam(predict.parameters(), lr=learning_rate, weight_decay=weight_decay)
generate_optimizer = torch.optim.Adam(generate.parameters(), lr=learning_rate, weight_decay=weight_decay)
merge_optimizer = torch.optim.Adam(merge.parameters(), lr=learning_rate, weight_decay=weight_decay)
stage1_encoder_scheduler = torch.optim.lr_scheduler.StepLR(stage1_encoder_optimizer, step_size=max(n_epochs//4,1), gamma=0.5)
encoder_scheduler = torch.optim.lr_scheduler.StepLR(encoder_optimizer, step_size=max(n_epochs//4,1), gamma=0.5)
predict_scheduler = torch.optim.lr_scheduler.StepLR(predict_optimizer, step_size=max(n_epochs//4,1), gamma=0.5)
generate_scheduler = torch.optim.lr_scheduler.StepLR(generate_optimizer, step_size=max(n_epochs//4,1), gamma=0.5)
merge_scheduler = torch.optim.lr_scheduler.StepLR(merge_optimizer, step_size=max(n_epochs//4,1), gamma=0.5)
# Move models to GPU
if USE_CUDA:
stage1_encoder.cuda()
encoder.cuda()
predict.cuda()
generate.cuda()
merge.cuda()
generate_num_ids = []
for num in generate_nums:
generate_num_ids.append(output_lang.word2index[num])
var_num_ids = []
for var in var_nums:
if var in output_lang.word2index.keys():
var_num_ids.append(output_lang.word2index[var])
best_val_acc = 0
best_equ_acc = 0
current_save_dir = os.path.join(save_dir, 'fold-'+str(fold))
current_best_val_acc = (0,0,0)
for epoch in range(n_epochs):
loss_total = 0
stage1_loss_total = 0
sent_acc_total, pro_acc_total, problem_len_total = 0, 0, 0
sentence_len_total = 0
random.seed(epoch+random_seed) # for reproduction
batch_dict = prepare_data_batch(train_pairs, batch_size, lm_tokenizer=bert_tokenizer,
use_group_num=False, use_lm=True)
id_batches = batch_dict['id_batches']
input_batches = batch_dict['input_batches']
input_lengths = batch_dict['input_lengths']
attention_mask_batches = batch_dict['attention_mask_batches']
token_type_ids_batches = batch_dict['token_type_ids_batches']
output_batches = batch_dict['output_batches']
output_lengths = batch_dict['output_lengths']
nums_batches = batch_dict['nums_batches']
num_stack_batches = batch_dict['num_stack_batches']
num_pos_batches = batch_dict['num_pos_batches']
num_size_batches = batch_dict['num_size_batches']
ans_batches = batch_dict['ans_batches']
stage1_span_ids_batches = batch_dict['stage1_span_ids_batches']
stage1_sentence_ids_batches = batch_dict['stage1_sentence_ids_batches']
attention_mask_sentence_batches = batch_dict['attention_mask_sentence_batches']
stage1_span_lengths = batch_dict['stage1_span_lengths']
sentence_length_batches = batch_dict['sentence_length_batches']
logs_content = "fold: {}".format(fold+1)
add_log(log_file, logs_content)
logs_content = "epoch: {}".format(epoch + 1)
add_log(log_file,logs_content)
start = time.time()
for idx in range(len(input_lengths)):
step_size = len(input_batches[idx]) // grad_acc_steps
for step in range(grad_acc_steps):
start_idx = step * step_size
end_idx = (step + 1) * step_size
if step_size == 0:
end_idx = len(input_batches[idx])
if step == grad_acc_steps - 1:
grad_acc = False
else:
grad_acc = True
if step == 0:
zero_grad = True
else:
zero_grad = False
loss, stage1_loss, sent_acc, pro_acc, problem_len = train_lm2tree_v2(input_batches[idx][start_idx:end_idx],
input_lengths[idx][start_idx:end_idx],
attention_mask_batches[idx][start_idx:end_idx],
token_type_ids_batches[idx][start_idx:end_idx],
output_batches[idx][start_idx:end_idx],
output_lengths[idx][start_idx:end_idx],
num_stack_batches[idx][start_idx:end_idx],
num_size_batches[idx][start_idx:end_idx],
stage1_span_ids_batches[idx][start_idx:end_idx],
stage1_span_lengths[idx][start_idx:end_idx],
stage1_sentence_ids_batches[idx][start_idx:end_idx],
attention_mask_sentence_batches[idx][start_idx:end_idx],
sentence_length_batches[idx][start_idx:end_idx],
generate_num_ids, stage1_encoder, encoder, predict, generate, merge,
stage1_encoder_optimizer, encoder_optimizer, predict_optimizer,
generate_optimizer, merge_optimizer, output_lang,
num_pos_batches[idx][start_idx:end_idx], id_batches[idx][start_idx:end_idx],
use_clip=use_clip, clip=gclip,
grad_acc=grad_acc, zero_grad=zero_grad, grad_acc_steps=grad_acc_steps,
var_nums=var_num_ids, labels_num=num_labels)
loss_total += loss
stage1_loss_total += stage1_loss
sent_acc_total += sent_acc
pro_acc_total += pro_acc
problem_len_total += problem_len
sentence_len_total += step_size
stage1_encoder_scheduler.step()
encoder_scheduler.step()
predict_scheduler.step()
generate_scheduler.step()
merge_scheduler.step()
logs_content = "stage1 loss: {}".format(stage1_loss_total / len(input_lengths))
add_log(log_file,logs_content)
logs_content = "Training stage1 Sentence Accuracy: {}".format(sent_acc_total / problem_len_total)
add_log(log_file, logs_content)
logs_content = "Training stage1 Problem Accuracy: {}".format(pro_acc_total / sentence_len_total)
add_log(log_file, logs_content)
logs_content = "loss: {}".format(loss_total / len(input_lengths))
add_log(log_file,logs_content)
logs_content = "training time: {}".format(time_since(time.time() - start))
add_log(log_file,logs_content)
logs_content = "--------------------------------"
add_log(log_file,logs_content)
if epoch % 1 == 0 or epoch > n_epochs - 5:
value_ac = 0
equation_ac = 0
answer_ac = 0
eval_total = 0
test_sent_acc_total, test_pro_acc_total, test_problem_len_total = 0, 0, 0
start = time.time()
for test_batch in test_pairs:
tokens_dict = bert_tokenizer(' '.join(test_batch['input_cell']), add_special_tokens=False)
raw_input_ids = tokens_dict["input_ids"]
tokens_dict["input_ids"] = []
stage1_sentence_ids = []
sentence_length = []
sentence_m = [list(group) for k, group in groupby(raw_input_ids, lambda x: x == 102 or
x == 0) if not k]
for sentence_id, i in enumerate(sentence_m):
sentence_length.append(len(i)+1)
stage1_sentence_ids.extend([sentence_id] * (len(i)+1))
stage1_sentence_ids.extend([0] * (raw_input_ids.count(0)))
for t_id in raw_input_ids:
if t_id == len(bert_tokenizer.vocab):
tokens_dict["input_ids"].append(1)
else:
tokens_dict["input_ids"].append(t_id)
num_pos = []
for idx, t_id in enumerate(tokens_dict["input_ids"]):
if t_id == 1:
num_pos.append(idx)
attention_mask_sentence = [float(i != -100) for i in test_batch['stage1_span']]
#print(test_batch['id'])
test_res, test_sent_acc, test_pro_acc, test_problem_len = evaluate_lm2tree_v2(tokens_dict["input_ids"],
len(tokens_dict["input_ids"]),
tokens_dict["attention_mask"], tokens_dict["token_type_ids"],
test_batch['stage1_span'], test_batch['stage1_span_len'],
stage1_sentence_ids, attention_mask_sentence, sentence_length,
generate_num_ids, stage1_encoder, encoder, predict, generate,
merge, output_lang, num_pos, beam_size=beam_size, beam_search=beam_search,
var_nums=var_num_ids, labels_num=num_labels)
test_sent_acc_total += test_sent_acc
test_pro_acc_total += test_pro_acc
test_problem_len_total += test_problem_len
import traceback
try:
val_ac, equ_ac, ans_ac, \
test_res_result, test_tar_result = compute_equations_result(test_res, test_batch['output_cell'],
output_lang, test_batch['nums'],
test_batch['num_stack'],
ans_list=test_batch['ans'],
tree=True, prefix=True)
# print(test_res_result, test_tar_result)
except Exception as e:
# traceback.print_exc()
# print(e)
val_ac, equ_ac, ans_ac = False, False, False
if val_ac:
value_ac += 1
if equ_ac:
equation_ac += 1
if ans_ac:
answer_ac += 1
eval_total += 1
logs_content = "Testing Stage1 Sentence Accuracy: {}".format(test_sent_acc_total / test_problem_len_total)
add_log(log_file, logs_content)
logs_content = "Testing Stage1 Problem Accuracy: {}".format(test_pro_acc_total / len(test_pairs))
add_log(log_file, logs_content)
logs_content = "{}, {}, {}".format(equation_ac, value_ac, eval_total)
add_log(log_file, logs_content)
logs_content = "test_answer_acc: {} {}".format(float(equation_ac) / eval_total, float(value_ac) / eval_total)
add_log(log_file, logs_content)
logs_content = "testing time: {}".format(time_since(time.time() - start))
add_log(log_file, logs_content)
logs_content = "------------------------------------------------------"
add_log(log_file, logs_content)
all_acc_data.append((fold, epoch,equation_ac, value_ac, eval_total))
torch.save(stage1_encoder.state_dict(), os.path.join(current_save_dir, "seq2tree_stage1_encoder"))
torch.save(encoder.state_dict(), os.path.join(current_save_dir, "seq2tree_encoder"))
torch.save(predict.state_dict(), os.path.join(current_save_dir, "seq2tree_predict"))
torch.save(generate.state_dict(), os.path.join(current_save_dir, "seq2tree_generate"))
torch.save(merge.state_dict(), os.path.join(current_save_dir, "seq2tree_merge"))
if best_val_acc < value_ac:
best_val_acc = value_ac
current_best_val_acc = (equation_ac, value_ac, eval_total)
torch.save(stage1_encoder.state_dict(), os.path.join(current_save_dir, "seq2tree_stage1_encoder_best_val_acc"))
torch.save(encoder.state_dict(), os.path.join(current_save_dir, "seq2tree_encoder_best_val_acc"))
torch.save(predict.state_dict(), os.path.join(current_save_dir, "seq2tree_predict_best_val_acc"))
torch.save(generate.state_dict(), os.path.join(current_save_dir, "seq2tree_generate_best_val_acc"))
torch.save(merge.state_dict(), os.path.join(current_save_dir, "seq2tree_merge_best_val_acc"))
if best_equ_acc < equation_ac:
best_equ_acc = equation_ac
torch.save(stage1_encoder.state_dict(), os.path.join(current_save_dir, "seq2tree_stage1_encoder_best_equ_acc"))
torch.save(encoder.state_dict(), os.path.join(current_save_dir, "seq2tree_encoder_best_equ_acc"))
torch.save(predict.state_dict(), os.path.join(current_save_dir, "seq2tree_predict_best_equ_acc"))
torch.save(generate.state_dict(), os.path.join(current_save_dir, "seq2tree_generate_best_equ_acc"))
torch.save(merge.state_dict(), os.path.join(current_save_dir, "seq2tree_merge_best_equ_acc"))
if epoch == n_epochs - 1:
last_acc_fold.append((equation_ac, value_ac, eval_total))
best_val_acc_fold.append(current_best_val_acc)
a, b, c = 0, 0, 0
for bl in range(len(last_acc_fold)):
a += last_acc_fold[bl][0]
b += last_acc_fold[bl][1]
c += last_acc_fold[bl][2]
logs_content = "{}".format(last_acc_fold[bl])
add_log(log_file, logs_content)
logs_content = "{} {}".format(a / float(c), b / float(c))
add_log(log_file, logs_content)
logs_content = "------------------------------------------------------"
add_log(log_file, logs_content)
a, b, c = 0, 0, 0
for bl in range(len(best_val_acc_fold)):
a += best_val_acc_fold[bl][0]
b += best_val_acc_fold[bl][1]
c += best_val_acc_fold[bl][2]
logs_content = "{}".format(best_val_acc_fold[bl])
add_log(log_file, logs_content)
logs_content = "{} {}".format(a / float(c), b / float(c))
add_log(log_file, logs_content)
logs_content = "------------------------------------------------------"
add_log(log_file, logs_content)
logs_content = "{}".format(all_acc_data)
add_log(log_file, logs_content)