-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
455 lines (365 loc) · 17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import argparse
import os
import numpy as np
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
from model.lenet import LeNet, LabelSmoothLoss
import numpy
from metann import Learner
import scipy
from scipy import io
import pickle
import imageio
torch.manual_seed(0)
numpy.random.seed(0)
parser = argparse.ArgumentParser(description='PyTorch Codes')
parser.add_argument('--data_dir', default='data', type=str,
help='dataset dir')
parser.add_argument('--dataset', default='mnist', type=str,
help='dataset mnist or cifar10')
parser.add_argument('--num_iters', default=6001, type=int,
help='number of total epochs to run')
parser.add_argument('--start_iters', default=0, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=32, type=int,
help='mini-batch size (default: 128)')
parser.add_argument('--lr', '--min-learning-rate', default=0.0001, type=float,
help='initial learning rate')
parser.add_argument('--lr_max', '--adv-learning-rate', default=1, type=float,
help='adversarial learning rate')
parser.add_argument('--gamma', default=1, type=float,
help='to make them closer in latent space, less gamma, larger distance 1')
parser.add_argument('--T_adv', default=30, type=int,
help='max iterations: 30')
parser.add_argument('--T_sample', default=10, type=int,
help='MC sample times')
parser.add_argument('--advstart_iter', default=100, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('--K', default=20, type=int,
help='num of augmented test domains')
parser.add_argument('--T_min', default=1, type=int,
help='min iterations')
parser.add_argument('--print-freq', '-p', default=1000, type=int,
help='print frequency (default: 10)')
parser.add_argument('--resume', default=None, type=str,
help='p ath to latest checkpoint (default: none)')
parser.add_argument('--name', default='exp', type=str,
help='name of experiment: ')
parser.add_argument('--mode', default='train', type=str,
help='train or test')
parser.add_argument('--tensorboard', default=True, type=bool,
help='Log progress to TensorBoard')
parser.add_argument('--GPU_ID', default=1, type=int,
help='GPU_id')
parser.add_argument('--num_updates', default=1, type=int,
help='number of meta-train')
best_prec1 = 0
def main():
global args, best_prec1
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 on stackoverflow
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.GPU_ID)
exp_name = args.name
exp_dir = os.path.join('Digits', exp_name)
if not os.path.exists(exp_dir):
os.makedirs(exp_dir)
logfile = open(os.path.join(exp_dir, '.log'), 'w')
# Data loading code
kwargs = {'num_workers': 4}
# construct train and val dataloader
train_loader, val_loader = construct_datasets(args.data_dir, args.batch_size, kwargs)
model = Learner(LeNet())
parameters_theta = []
parameters_phi = []
for name, param in model.named_parameters():
if "_" in name:
parameters_phi.append(param)
else:
parameters_theta.append(param)
model = model.cuda()
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['iter']
prec = checkpoint['prec']
print(prec)
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (iter {})"
.format(args.resume, checkpoint['iter']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss().cuda()
criterion_smooth = LabelSmoothLoss().cuda()
mse_loss = nn.MSELoss().cuda()
optimizer = torch.optim.Adam(model.parameters(), args.lr)
optimizer_theta = torch.optim.Adam(parameters_theta, args.lr)
aug_optimizer = torch.optim.SGD(parameters_phi, args.lr_max)
if args.mode == 'train':
print('Training')
train_loader_iter = iter(train_loader)
counter_k = 0
for t in range(args.start_iters, args.num_iters):
losses = AverageMeter()
top1 = AverageMeter()
model.train()
try:
input, target = next(train_loader_iter)
except:
train_loader_iter = iter(train_loader)
input, target = next(train_loader_iter)
input, target = input.cuda(non_blocking=True).float(), target.cuda(non_blocking=True).long()
if t > args.advstart_iter and (t + 1) % args.T_min == 0 and counter_k < args.K:
for n in range(args.T_adv):
params = list(model.parameters())
output_a_1, output_a_2, output_a_4, output_a_o = model.functional(params, True, input, return_feat=True, noise_layer=False)
mask, output_b_1, output_b_2, output_b_4, output_b_o = model.functional(params, True, input, mix=False, return_feat=True, noise_layer=True)
ce_loss = criterion(output_b_o, target)
constraint_loss = mse_loss(output_a_4, output_b_4)
aug_loss = -ce_loss + args.gamma*constraint_loss
aug_optimizer.zero_grad()
aug_loss.backward()
aug_optimizer.step()
counter_k += 1
params = list(model.parameters())
output_a_1, output_a_2, output_a_4, output_a_o = model.functional(params, True, input, return_feat=True, noise_layer=False)
ce_loss = criterion(output_a_o, target)
if counter_k == 0:
optimizer_theta.zero_grad()
ce_loss.backward()
optimizer_theta.step()
else:
grads = torch.autograd.grad(ce_loss, params, create_graph=True, allow_unused=True)
params_new = []
for param, grad in zip(params, grads):
if grad is None:
params_new.append((param).requires_grad_())
else:
params_new.append((param - args.lr * grad).requires_grad_())
loss_b_mc = 0
for _ in range(args.T_sample):
lam, mask, output_b_n = model.functional(params_new, True, input, mix=False, noise_layer=True)
lam2, mask2, output_b_n_mix = model.functional(params_new, True, input, noise_layer=True)
loss_b_mc += criterion(output_b_n, target) + 0.01*criterion_smooth(output_b_n_mix, target, mask2, lam2)
loss_b = loss_b_mc/args.T_sample + ce_loss
optimizer.zero_grad()
loss_b.backward(create_graph=True)
optimizer.step()
# measure accuracy and record loss
prec1 = accuracy(output_a_o, target, topk=(1,))[0]
losses.update(ce_loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
if t % args.print_freq == 0:
acc_info = 'Iter: [{0}][{1}/{2}]\t' \
'Loss {loss.val:.4f} ({loss.avg:.4f})\t' \
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
t, t, args.num_iters, loss=losses, top1=top1)
print(acc_info)
logfile.write(acc_info + '\n')
prec1 = validate(val_loader, model)
print("validation set acc", prec1)
logfile.write('validation set acc: ' + str(prec1) + '\n')
if t >= 1000:
validate_all(model, args.data_dir, exp_name, args.batch_size, logfile, t, kwargs)
validate_all(model, args.data_dir, exp_name, args.batch_size, logfile, t, kwargs)
logfile.close()
def cross_entropy(pred, soft_targets):
logsoftmax = nn.LogSoftmax()
return torch.mean(torch.sum(- soft_targets * logsoftmax(pred), 1))
def construct_datasets(data_dir, batch_size, kwargs):
def data2loader(imgs, labels):
assert len(imgs) == len(labels)
y = torch.stack([torch.from_numpy(np.array(i)) for i in labels])
imgs = np.transpose(imgs, (0, 3, 1, 2)) # pytorch CHW, tf HWC
X = torch.stack([torch.from_numpy(imgs[i]) for i in range(len(labels))])
X_dataset = torch.utils.data.TensorDataset(X, y)
X_loader = torch.utils.data.DataLoader(X_dataset, batch_size=batch_size, shuffle=True, drop_last=True, **kwargs)
return X_loader
train_imgs, train_labels = load_mnist(data_dir, 'train')
val_imgs, val_labels = load_mnist(data_dir, 'test')
return data2loader(train_imgs, train_labels), data2loader(val_imgs, val_labels)
def validate(val_loader, model):
"""Perform validation on the validation set"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
params = list(model.parameters())
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda(non_blocking=True).long()
input = input.cuda(non_blocking=True).float()
with torch.no_grad():
output = model.functional(params, False, input)
# measure accuracy and record loss
prec1 = accuracy(output.data, target, topk=(1,))[0]
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return top1.avg
def validate_all(model, data_dir, exp_name, batch_size, logfile, t, kwargs):
def data2loader(imgs, labels):
assert len(imgs) == len(labels)
y = torch.stack([torch.from_numpy(np.array(i)) for i in labels])
imgs = np.transpose(imgs, (0, 3, 1, 2)) # pytorch CHW, tf HWC
X = torch.stack([torch.from_numpy(imgs[i]) for i in range(len(labels))])
X_dataset = torch.utils.data.TensorDataset(X, y)
X_loader = torch.utils.data.DataLoader(X_dataset, batch_size=batch_size, shuffle=True, drop_last=True, **kwargs)
return X_loader
model.eval()
params = list(model.parameters())
accs = []
target_domains = ['mnist', 'svhn', 'mnist_m', 'syn', 'usps']
for td in target_domains:
print(td)
logfile.write(td + '\n')
target_test_images, target_test_labels = load_test_data(data_dir, td)
test_loader = data2loader(target_test_images, target_test_labels)
top1 = AverageMeter()
for i, (input, target) in enumerate(test_loader):
target = target.cuda(non_blocking=True).long()
input = input.cuda(non_blocking=True).float()
with torch.no_grad():
output = model.functional(params, False, input)
prec1 = accuracy(output.data, target, topk=(1,))[0]
top1.update(prec1.item(), input.size(0))
accs.append(top1.avg)
acc_info = ' * Prec@1 {top1.avg:.3f}'.format(top1=top1)
print(acc_info)
logfile.write(acc_info + '\n')
avg_acc = np.mean(accs[1:])
accs.append(avg_acc)
print('avg acc', avg_acc)
logfile.write(str(t) +' avg acc: ' + str(avg_acc) + '\n')
def save_checkpoint(state, dataset, exp_name, filename='checkpoint.pth.tar'):
"""Saves checkpoint to disk"""
directory = "runs/%s/%s/"%(dataset, exp_name)
if not os.path.exists(directory):
os.makedirs(directory)
filename = directory + filename
torch.save(state, filename)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def asarray_and_reshape(imgs, labels):
imgs = np.asarray(imgs)
labels = np.asarray(labels)
imgs = np.reshape(imgs, (-1, 3, 32, 32)) # pytorch CHW
labels = np.reshape(labels, (-1,))
return imgs, labels
def load_svhn(data_dir, split='train'):
print('Loading SVHN dataset.')
image_file = 'train_32x32.mat' if split == 'train' else 'test_32x32.mat'
image_dir = os.path.join(data_dir, 'svhn', image_file)
svhn = io.loadmat(image_dir)
images = np.transpose(svhn['X'], [3, 0, 1, 2]) / 255.
labels = svhn['y'].reshape(-1)
labels[np.where(labels == 10)] = 0
return images, labels
def load_mnist(data_dir, split='train'):
print('Loading MNIST dataset.')
image_file = 'train.pkl' if split == 'train' else 'test.pkl'
image_dir = os.path.join(data_dir, 'mnist', image_file)
with open(image_dir, 'rb') as f:
mnist = pickle.load(f, encoding="bytes")
images = mnist['X']
labels = mnist['y']
images = images / 255.
images = np.stack((images, images, images), axis=3) # grayscale to rgb
return np.squeeze(images[:10000]), labels[:10000]
def load_mnist_m(data_dir, split='train'):
print('Loading MNIST_M dataset.')
image_dir = os.path.join(data_dir, 'mnist_m')
if split == 'train':
data_dir = os.path.join(image_dir, 'mnist_m_train')
with open(os.path.join(image_dir, 'mnist_m_train_labels.txt')) as f:
content = f.readlines()
elif split == 'test':
data_dir = os.path.join(image_dir, 'mnist_m_test')
with open(os.path.join(image_dir, 'mnist_m_test_labels.txt')) as f:
content = f.readlines()
content = [c.split('\n')[0] for c in content]
images_files = [c.split(' ')[0] for c in content]
labels = np.array([int(c.split(' ')[1]) for c in content]).reshape(-1)
images = np.zeros((len(labels), 32, 32, 3))
for no_img, img in enumerate(images_files):
img_dir = os.path.join(data_dir, img)
im = imageio.imread(img_dir)
im = np.expand_dims(im, axis=0)
images[no_img] = im
images = images
images = images / 255.
return images, labels
def load_syn(data_dir, split='train'):
print('Loading SYN dataset.')
image_file = 'synth_train_32x32.mat' if split == 'train' else 'synth_test_32x32.mat'
image_dir = os.path.join(data_dir, 'syn', image_file)
syn = scipy.io.loadmat(image_dir)
images = np.transpose(syn['X'], [3, 0, 1, 2])
labels = syn['y'].reshape(-1)
labels[np.where(labels == 10)] = 0
images = images / 255.
return images, labels
def load_usps(data_dir, split='train'):
print('Loading USPS dataset.')
image_file = 'usps_train_32x32.pkl' if split == 'train' else 'usps_test_32x32.pkl'
# image_file = 'usps_32x32.pkl'
image_dir = os.path.join(data_dir, 'usps', image_file)
with open(image_dir, 'rb') as f:
usps = pickle.load(f, encoding="bytes")
images = usps['X']
labels = usps['y']
print('label range [{0}-{1}]'.format(np.min(labels), np.max(labels)))
# labels -= 1
# labels[labels == 255] = 9
if np.max(images) == 255:
images = images / 255.
assert np.max(images) == 1
images = np.squeeze(images)
images = np.stack((images, images, images), axis=3) # grayscale to rgb
return images, labels
def load_test_data(data_dir, target):
if target == 'svhn':
target_test_images, target_test_labels = load_svhn(data_dir, split='test')
elif target == 'mnist':
target_test_images, target_test_labels = load_mnist(data_dir, split='test')
elif target == 'syn':
target_test_images, target_test_labels = load_syn(data_dir, split='test')
elif target == 'usps':
target_test_images, target_test_labels = load_usps(data_dir, split='test')
elif target == 'mnist_m':
target_test_images, target_test_labels = load_mnist_m(data_dir, split='test')
return target_test_images, target_test_labels
if __name__ == '__main__':
main()