-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathearly_stopping.py
46 lines (41 loc) · 1.72 KB
/
early_stopping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
from pathlib import Path
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=7, verbose=False):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = 0
def __call__(self, score, model, save_path):
#score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(score, model, save_path)
elif score < self.best_score:
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(score, model, save_path)
self.counter = 0
def save_checkpoint(self, val_loss, model, save_path):
'''Saves model when validation loss decrease.'''
if self.verbose:
print(f'Validation F1 increased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
if Path(save_path).exists() is False:
Path(save_path).mkdir()
torch.save(model.state_dict(), save_path+'/state_dict.pt')
# torch.save(model, save_path+'/model.pt')
self.val_loss_min = val_loss