-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
50 lines (39 loc) · 1.78 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
MAX_LEN = 128
bs = 8
EPOCHS = 30
PATIENCE = 30
INITIAL_LEARNING_RATE = 3e-5
NUM_RUNS = 1 #Number of times to run the training and evaluation code
CUE_MODEL = 'custom'
SCOPE_MODEL = 'custom'
SCOPE_METHOD = 'augment' # Options: augment, replace
F1_METHOD = 'average' # Options: average, first_token
TASK = 'negation' # Options: negation, speculation
SUBTASK = 'scope_resolution' # Options: cue_detection, scope_resolution
TRAIN_DATASETS = ['vetcompass']
TEST_DATASETS = ['bioscope_full_papers','bioscope_abstracts','sfu','sherlock', 'vetcompass']
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json"
}
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin"
}
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP = {
'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-pytorch_model.bin"
}
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-config.json"
}
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
'xlnet-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-config.json"
}
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP = {
'xlnet-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-pytorch_model.bin"
}
TF_WEIGHTS_NAME = 'model.ckpt'
CONFIG_NAME = "config.json"
WEIGHTS_NAME = "pytorch_model.bin"
SAVE_PATH = "scope_cuenb_vc"
PRETRAINED_PATH = "cuenb"