-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.tex
106 lines (104 loc) · 5.02 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
\documentclass[10pt]{article}
\usepackage[utf8]{inputenc}
\usepackage{xcolor}
\usepackage{helvet}
\renewcommand{\familydefault}{\sfdefault}
\usepackage{tikz}
\usepackage[paperwidth=37cm,paperheight=34cm,left=1cm,right=1cm,bottom=1cm,top=1cm]{geometry}
\usetikzlibrary{mindmap,backgrounds}
\pagestyle{empty}
\begin{document}
\begin{tikzpicture}[mindmap, grow cyclic, every node/.style=concept, concept color=black, text=white, scale=1,
level 1/.append style={level distance=8cm,sibling angle=36},
level 2/.append style={level distance=4cm,sibling angle=30},
level 3/.append style={level distance=4cm,sibling angle=28},
]
\node [scale=2] {Machine learning\\in\\particle physics}
child [concept color=orange, style={level distance=13cm}] {node [scale=1.4] {Represen-tations/\\Architectures}
child [sibling angle=34] {node {Jet images}}
child [sibling angle=34] {node {Event images}}
child [sibling angle=34] {node {Sequences}}
child [sibling angle=34] {node {Trees}}
child [sibling angle=34] {node {Graphs}}
child [sibling angle=34] {node {Sets (point clouds)}}
child [sibling angle=34] {node {Equivariant models}}
child [sibling angle=34] {node (pinn) {Physics-inspired}}
}
child [concept color=red, level distance=9cm] { node [scale=1.4] {Classification}
child {node {Param-etrized classifiers} }
child [style={level distance=6.5cm}]{node [scale=1.4] {Targets}
child {node [scale=1.2] {Jet tagging}}
child {node [scale=1.2] {BSM physics}}
child {node [scale=1.2] {Particle identification}} child {node {Cosmology, astro-, and cosmic-ray physics}}
child {node [scale=1.2] {Neutrino detectors}}
child {node [scale=1.2] {Direct dark matter detectors}}
}
}
child [concept color=red!50!purple, style={level distance=12cm}] {node [scale=1.4] (ls) {Learning strategies}
child {node (un) {Un-supervised}}
child {node {Weak/semi-supervised}}
child {node {Hyper-parameter optimization}}
child {node {Reinforce-ment learning}}
child {node {Quantum machine learning}}
child {node (fr) {Feature ranking}}
child {node {Attention}}
child {node {Regular-ization}}
child {node {Optimal transport}}
}
child [concept color=red!50!violet, style={level distance=12cm}] { node [scale=1.4] {Fast\\inference}
child { node (hal) {Hardware-aware learning}}
child { node {Deployment}}
child { node {Firmware/\\software}}
child { node {Knowledge distillation}}
}
child [concept color=violet, style={level distance=12cm}] { node (reg) [scale=1.4] {Regression}
child {node {Pileup} }
child {node {Calibration} }
child {node {Recasting} }
child {node {Matrix elements} }
child {node {Parton distribution functions}}
child {node {Lattice guage theory}}
child {node {Function approximation}}
child {node {Symbolic regression}}
}
child [concept color=blue] { node (deco) [scale=1.4] {Decorrelation methods}
child { node {Adversarial training}}
child { node {Quantile regression}}
}
child [concept color=blue!50!teal, style={level distance=11cm}] { node (gen) [scale=1.4] {Generative modeling / density estimation}
child { node {Diffusion models}}
child { node {Mixture models}}
child { node {Phase space generation}}
child { node {Gaussian processes}}
child { node (gan) {Generative adversarial networks}}
}
child [concept color=teal] { node (ad) [scale=1.4] {Anomaly detection}
child [sibling angle=50] { node (nf) {Normalizing flows}}
child [sibling angle=50] { node (ae) {Auto-encoders}}
}
child [concept color=teal!50!yellow, style={level distance=11cm}] { node [scale=1.4] {Simulation-based inference}
child {node (pe) {Parameter estimation}}
child {node {Unfolding}}
child {node (da) {Domain adaptation}}
child {node {BSM physics}}
child {node {Diff-erentiable simulation}}
}
child [concept color=yellow!50!orange, level distance=8cm] { node [scale=1.4] {Uncertainty quantification}
child [sibling angle=50] {node (interp) {Inter-pretability}}
child [sibling angle=50] {node {Estimation}}
child [sibling angle=50] {node {Mitigation}}
child [sibling angle=50] {node (ual) {Uncertainty-aware learning}}
};
\begin{pgfonlayer}{background}
\path (gen) to[circle connection bar switch color=from (blue!50!teal) to (teal)] (ae);
\path (gen) to[circle connection bar switch color=from (blue!50!teal) to (teal)] (nf);
\path (reg) to[circle connection bar switch color=from (violet) to (teal!50!yellow)] (pe);
\path (gen) to[circle connection bar switch color=from (blue!50!teal) to (orange)] (pinn);
\path (ad) to[circle connection bar switch color=from (teal) to (red!50!purple)] (un);
\path (deco) to[circle connection bar switch color=from (blue) to (teal!50!yellow)] (da);
\path (ls) to[circle connection bar switch color=from (red!50!purple) to (purple)] (hal);
\path (ls) to[circle connection bar switch color=from (red!50!purple) to (yellow!50!orange)] (ual);
\path (interp) to[circle connection bar switch color=from (yellow!50!orange) to (red!50!purple)] (fr);
\end{pgfonlayer}
\end{tikzpicture}
\end{document}