-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
674 lines (584 loc) · 33.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
from __future__ import print_function
import argparse
import sys
import torch
import torch.utils.data
import shutil
import os
import numpy as np
import pickle
from torch.utils.tensorboard import SummaryWriter
sys.path.insert(1,'.')
from model.neural_marionette import NeuralMarionette
from utils.train_utils import COLORS, display_opts, display_it, weights_init, LOGGER, LOSS_SCHEDULER
from dataset.dataset import DATASET_LIST
from vis.visualize import vis_recon, vis_keypoints
from utils.eval_utils import evaluate, evaluate_final
from dataset.config import adjust_config
import collections
torch.autograd.set_detect_anomaly(True)
#========================================================================================
# argument parsing
#========================================================================================
parser = argparse.ArgumentParser()
# about training itself
parser.add_argument('--seed', type=int, default= 0, help='seed for random')
parser.add_argument('--nepoch', type=int, default = 2000, help='')
parser.add_argument('--lrate', type=float, default =1e-3, help='')
parser.add_argument('--firstdecay', type=int, default = 1, help='')
parser.add_argument('--seconddecay', type=int, default = 10, help='')
parser.add_argument('--resume_epoch', type=str, default='0',help='')
parser.add_argument('--max_grad_norm', type=float, default = 30.0, help='')
parser.add_argument('--device', type=str, default='cuda:0')
# about saving & logging
parser.add_argument('--training_id', type=str, default=None,help='')
parser.add_argument('--save_every', type=int, default=1, help='epochs')
parser.add_argument('--save_que_len', type=int, default=100, help='maximum number of pth files')
parser.add_argument('--log_every', type=int, default=1, help='epochs')
parser.add_argument('--exp_name', type=str, default='default', help='')
parser.add_argument('--log_gif_num', type=int, default=8, help='sequence to log with tensorboard')
parser.add_argument('--log_gif_every', type=int, default=1, help='')
# about dataset
parser.add_argument('--dataset', type=str, default ="dfaust", help='')
parser.add_argument('--nbatch', type=int, default=24, help='')
parser.add_argument('--input_dim', type=int, default=3, help='2 for pixel, 3 for voxel')
parser.add_argument('--grid_size', type=int, default=64, help='grid size')
parser.add_argument('--is_binarized', type=int, default=1, help='whether dataset is binarized or sdf')
parser.add_argument('--Ttot', type=int, default=10, help='conditioned frame number')
parser.add_argument('--Tcond', type=int, default=5, help='conditioned frame number')
parser.add_argument('--sample_rate', type=int, default=1, help='conditioned frame number')
parser.add_argument('--random_crop', type=int, default=1, help='conditioned frame number')
parser.add_argument('--surface_sampled', type=int, default=1, help='conditioned frame number')
parser.add_argument('--debug', type=int, default=0, help='conditioned frame number')
parser.add_argument('--is_eval', type=int, default=0, help='conditioned frame number')
# about architecture
parser.add_argument('--nkeypoints', type=int, default=22, help='number of keypoints')
parser.add_argument('--gaussian_sigma', type=float, default=1.5, help='sigma for gaussian')
parser.add_argument('--dyna_module', type=str, default='SVRNN', help='choice of dynamics module')
parser.add_argument('--nlatent_kypt', type=int, default=128, help='kypt latent dimension')
parser.add_argument('--nhidden_kypt', type=int, default=512, help='kypt rnn state dimension')
parser.add_argument('--sep_sigma', type=float, default=0.02, help='kypt separation sigma dimension')
# loss weights
parser.add_argument('--recon_weight', type=float, default=100.0, help='')
parser.add_argument('--sparse_weight', type=float, default=5.0, help='')
parser.add_argument('--sep_weight', type=float, default=0.1, help='')
parser.add_argument('--vol_reg_weight', type=float, default=10.0, help='')
parser.add_argument('--kypt_const_weight', type=float, default=0.0, help='')
parser.add_argument('--local_const_weight', type=float, default=1e-3, help='')
parser.add_argument('--time_const_weight', type=float, default=1.0, help='')
parser.add_argument('--sparsity_const_weight', type=float, default=0.01, help='')
parser.add_argument('--intensity_const_weight', type=float, default=0.01, help='')
parser.add_argument('--graph_traj_weight', type=float, default=1.0, help='')
parser.add_argument('--graph_vol_weight', type=float, default=0.0, help='')
parser.add_argument('--kypt_recon_weight', type=float, default=1.0, help='')
parser.add_argument('--kl_kypt_weight', type=float, default=0.003, help='')
parser.add_argument('--gae_recon_weight', type=float, default=1.0, help='')
parser.add_argument('--topo_recon_weight', type=float, default=0.01, help='')
# anneal-related
parser.add_argument('--detector_start', type=int, default=0, help='')
parser.add_argument('--affinity_anneal', type=int, default=0, help='')
parser.add_argument('--learner_start', type=int, default=1e9, help='')
parser.add_argument('--detector_end', type=int, default=-1, help='')
parser.add_argument('--learner_end', type=int, default=-1, help='')
# pretraining-related
parser.add_argument('--pretrained_mode', type=int, default=0, help='0 for not using any, 1 for using pretrained detector only, 2 for using pretrained detector, dyna')
parser.add_argument('--pretrained_dir', type=str, default='pretrained', help='')
# experimental - detector
parser.add_argument('--vol_fit_type', type=str, default='chamfer', help='')
parser.add_argument('--gaussian_cat_type', type=str, default='none', help='')
parser.add_argument('--fixed_sigma', type=int, default=1, help='')
parser.add_argument('--keypoints_graph', type=str, default='affinity_params', help='')
parser.add_argument('--nneighbor', type=int, default=2, help='')
parser.add_argument('--keypoints_detach', type=int, default=0, help='')
parser.add_argument('--graph_random_init', type=int, default=0, help='')
parser.add_argument('--using_local_const', type=int, default=1, help='')
parser.add_argument('--using_time_const', type=int, default=1, help='')
parser.add_argument('--using_sparsity_const', type=int, default=1, help='')
parser.add_argument('--using_intensity_const', type=int, default=1, help='')
parser.add_argument('--const_intensity', type=int, default=3, help='')
parser.add_argument('--affinity_ver', type=int, default=3, help='')
parser.add_argument('--graph_loss_ver', type=int, default=1, help='')
# experimental - dynamics learner
parser.add_argument('--transition_type', type=str, default='dl', help='')
parser.add_argument('--using_pose_feature', type=int, default=1, help='')
parser.add_argument('--nlatent_pose', type=int, default=32, help='')
parser.add_argument('--using_dim_enhance', type=int, default=1, help='')
parser.add_argument('--enhance_dim', type=int, default=16, help='')
parser.add_argument('--sharing_enc_net', type=int, default=-1, help='version -1 : no enc, version 0 : no sharing, version 1 : sharing, version 2 : sharing but detach')
parser.add_argument('--state_mode', type=str, default='no_cat', help='')
parser.add_argument('--action_mode', type=str, default='pose', help='pose or vel')
parser.add_argument('--appnp_alpha', type=float, default=0.3, help='')
# experimental - agent related
parser.add_argument('--ncontrols', type=int, default=5, help='')
parser.add_argument('--replay_size', type=int, default=4e3, help='')
parser.add_argument('--agent_gamma', type=float, default=0.99, help='decaying factor for reward.')
parser.add_argument('--agent_alpha', type=float, default=0.2, help='temperature for policy entropy')
parser.add_argument('--agent_polyak', type=float, default=0.995, help='polyak param for target netowork update')
parser.add_argument('--rod_init_mode', type=str, default='static_uniform', help='')
parser.add_argument('--mapping_mode', type=str, default='node', help='')
parser.add_argument('--start_step', type=int, default=500, help='')
opt = parser.parse_args()
opt = adjust_config(opt)
# make network deterministic
torch.backends.cudnn.deterministic = True
torch.manual_seed(opt.seed)
torch.cuda.manual_seed_all(opt.seed)
np.random.seed(opt.seed)
if opt.pretrained_mode == 0:
opt.training_id = "rl_setup/disc_training/%s/%s/%dkypt" %(opt.dataset, opt.keypoints_graph, opt.nkeypoints)
elif opt.pretrained_mode == 1:
opt.training_id = "rl_setup/dyna_training/%s/%s/%s/%dkypt/%dzkypt_%dhkypt" %(opt.dataset, opt.transition_type, opt.dyna_module,
opt.nkeypoints, opt.nlatent_kypt, opt.nhidden_kypt)
opt.detector_end = 0
opt.learner_start = 0
elif opt.pretrained_mode == 2:
opt.training_id = "rl_setup/rl_training/%s/%s/%s/%dkypt_%dctrl" %(opt.dataset, opt.dyna_module, opt.mapping_mode,
opt.nkeypoints, opt.nctrols)
opt.detector_end = 0
opt.learner_end = 0
else:
raise ValueError("Wrong assignment on argument pretrained_mode!")
if opt.log_gif_num > opt.nbatch:
opt.log_gif_num = opt.nbatch
display_opts(opt)
#========================================================================================
#========================================================================================
# training element
#========================================================================================
DATASET = DATASET_LIST() #list of all the methods
#========================================================================================
#========================================================================================
# List of Loss
#========================================================================================
LOSS_LIST = ['recon_loss', 'sparsity_loss', 'separation_loss', 'vol_fit_reg', 'kypt_const_loss',
'local_const_loss', 'time_const_loss', 'sparsity_const_loss', 'intensity_const_loss', 'graph_traj_loss', 'graph_vol_loss',
'kl_kypt', 'kypt_recon_loss', 'gae_recon_loss', 'topo_recon_loss']
LOSS_WEIGHTS = {'recon_loss' : opt.recon_weight, 'sparsity_loss': opt.sparse_weight, 'separation_loss': opt.sep_weight,
'vol_fit_reg': opt.vol_reg_weight, 'kypt_const_loss': opt.kypt_const_weight,
'local_const_loss': opt.local_const_weight, 'time_const_loss' : opt.time_const_weight, 'sparsity_const_loss': opt.sparsity_const_weight, 'intensity_const_loss': opt.intensity_const_weight,
'graph_traj_loss': opt.graph_traj_weight, 'graph_vol_loss': opt.graph_vol_weight,
'kypt_recon_loss': opt.kypt_recon_weight, 'kl_kypt': opt.kl_kypt_weight, 'gae_recon_loss': opt.gae_recon_weight, 'topo_recon_loss': opt.topo_recon_weight}
detector_time = (opt.detector_start, opt.detector_end)
learner_time = (opt.learner_start, opt.learner_end)
ANNEAL_EPOCHS = {'recon_loss':detector_time, 'sparsity_loss':detector_time, 'separation_loss':detector_time,
'vol_fit_reg': detector_time, 'kypt_const_loss': detector_time,
'local_const_loss': detector_time, 'time_const_loss' : detector_time, 'sparsity_const_loss': detector_time, 'intensity_const_loss': detector_time,
'graph_traj_loss':detector_time, 'graph_vol_loss': detector_time,
'kl_kypt':learner_time, 'kypt_recon_loss':learner_time, 'gae_recon_loss': learner_time, 'topo_recon_loss' : learner_time}
MODULE_ACTIVE_EPOCHS = {'detector': detector_time, 'learner': learner_time}
for loss_name in LOSS_LIST:
if loss_name in LOSS_WEIGHTS.keys():
continue
LOSS_WEIGHTS[loss_name] = 1.0 # fill with one for other loss
loss_scheduler = LOSS_SCHEDULER(LOSS_LIST, LOSS_WEIGHTS, ANNEAL_EPOCHS, MODULE_ACTIVE_EPOCHS)
#========================================================================================
#========================================================================================
# dataset selection
#========================================================================================
if opt.dataset not in DATASET.type:
print(COLORS.FAIL,"ERROR please select the dataset from : ",COLORS.ENDC)
for dataset in DATASET.type:
print(" >",dataset)
exit()
dataset_train = DATASET.load(training=True, options=opt)
dataloader_train = torch.utils.data.DataLoader(dataset_train,
shuffle=True,
batch_size=opt.nbatch,
num_workers=0)
dataset_valid = DATASET.load(training=False, options=opt)
dataloader_valid = torch.utils.data.DataLoader(dataset_valid,
shuffle=False,
batch_size=opt.nbatch,
num_workers=0)
#======================================================================================
#========================================================================================
# model selection
#========================================================================================
network = NeuralMarionette(opt).cuda() # load the loss
logger_path = "./output/%s/%s" % (opt.training_id, opt.exp_name)
ckpt_path = os.path.join(logger_path, 'epochs')
start_epoch = 0
if os.path.exists(ckpt_path):
resumes = os.listdir(ckpt_path)
resume_file = os.path.join(ckpt_path, opt.resume_epoch, 'network.pth')
buffer_file = os.path.join(ckpt_path, opt.resume_epoch, 'replay_buffer.pkl')
# demanding resume_epoch exists
if os.path.exists(resume_file) and opt.resume_epoch != '0':
checkpoint = torch.load(resume_file)
network.load_state_dict(checkpoint)
if opt.pretrained_model == 2:
with open(buffer_file, 'rb') as f:
buffer = pickle.load(f)
network.agent.replay_buffer.load(buffer)
start_epoch = int(opt.resume_epoch) + 1
# by default, resuming from most latest checkpoint
elif int(opt.resume_epoch) == 0 and len(resumes) > 0:
resumes = sorted([int(ep) for ep in resumes])
resume_epoch = resumes[-1]
resume_file = os.path.join(ckpt_path, str(resume_epoch), 'network.pth')
checkpoint = torch.load(resume_file)
network.load_state_dict(checkpoint)
start_epoch = resume_epoch + 1
else:
if opt.pretrained_mode == 0:
network.apply(weights_init) # init the weight
# in case where previous experiments do not exist or resume_epoch number does not exist
elif int(opt.resume_epoch) != 0:
raise ValueError('No previous checkpoints from this setting.')
elif opt.pretrained_mode == 0:
network.apply(weights_init) # init the weight
if opt.pretrained_mode == 1:
resume_file = os.path.join(opt.pretrained_dir, 'detector', '%s_detector.pth' % opt.dataset)
if os.path.exists(resume_file):
checkpoint = torch.load(resume_file)
checkpoint = collections.OrderedDict(filter(lambda p: p[0].split('.')[0] == 'kypt_detector', checkpoint.items()))
checkpoint = collections.OrderedDict({k[14:]: v for k, v in checkpoint.items()}) # substract 'kypt_detector.'
network.kypt_detector.load_state_dict(checkpoint)
else:
raise ValueError('pretrained file is not existing.')
elif opt.pretrained_mode == 2:
resume_file = os.path.join(opt.pretrained_dir, 'dyna', '%s_%s_%s_%s_dyna.pth' % (opt.dataset, opt.dyna_module, opt.transition_type, opt.action_mode))
if os.path.exists(resume_file):
checkpoint = torch.load(resume_file)
# load kypt_detector part
checkpoint_detector = collections.OrderedDict(filter(lambda p: p[0].split('.')[0] == 'kypt_detector', checkpoint.items()))
checkpoint_detector = collections.OrderedDict({k[14:]: v for k, v in checkpoint_detector.items()}) # substract 'kypt_detector.'
network.kypt_detector.load_state_dict(checkpoint_detector)
# load dyna_module part
checkpoint_dyna = collections.OrderedDict(filter(lambda p: p[0].split('.')[0] == 'dyna_module', checkpoint.items()))
checkpoint_dyna = collections.OrderedDict({k[12:]: v for k, v in checkpoint_dyna.items()}) # substract 'dyna_module.'
network.dyna_module.load_state_dict(checkpoint_dyna)
network.agent.trainset_len = len(dataset_train)
else:
raise ValueError('pretrained file is not existing.')
#========================================================================================
#======================================================================================
# optimizer
#======================================================================================
optimizer = torch.optim.Adam(network.parameters(), lr=opt.lrate)
#======================================================================================
#======================================================================================
# training logs
#======================================================================================
if not os.path.exists('output'):
os.makedirs('output')
if not os.path.exists(logger_path):
os.makedirs(logger_path)
os.makedirs(os.path.join(logger_path, 'epochs'))
with open('%s/opt.pickle'%logger_path, 'wb') as handle:
pickle.dump(opt, handle, protocol=pickle.HIGHEST_PROTOCOL)
train_log = LOGGER()
valid_log = LOGGER()
for loss_name in LOSS_LIST:
train_log.add_keys(loss_name)
if loss_name != 'nrom_cons':
valid_log.add_keys(loss_name)
if opt.is_eval:
scores = dict()
scores_log = dict()
eval_metrics = ['semantic']
for eval_name in eval_metrics:
valid_log.add_keys(eval_name)
scores[eval_name] = None
scores_log[eval_name] = None
#======================================================================================
#======================================================================================
# tensorboard
#======================================================================================
os.makedirs(os.path.join(logger_path, 'logs'), exist_ok=True)
writer = SummaryWriter(log_dir=os.path.join(logger_path, 'logs'), purge_step=start_epoch, flush_secs=30)
os.makedirs(os.path.join(logger_path, 'gifs'), exist_ok=True)
#======================================================================================
# TRAINING BEGIN
#======================================================================================
for epoch_id in range(start_epoch, opt.nepoch):
network.train()
dataset_train.log_epoch(epoch_id)
dataset_valid.log_epoch(epoch_id)
# scheduling loss
loss_scheduler.anneal(epoch_id)
if epoch_id % opt.log_gif_every == 0:
loss_scheduler.display_active()
loss_scheduler.display_loss()
#==================================================================================
# training
#==================================================================================
stacked_voxel = None
network.anneal(epoch_id)
network.control_active(loss_scheduler.module_actives)
if epoch_id < opt.firstdecay:
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, network.parameters()), lr=opt.lrate)
torch.nn.utils.clip_grad_norm_(filter(lambda p: p.requires_grad, network.parameters()), opt.max_grad_norm)
elif epoch_id >= opt.firstdecay and epoch_id < opt.seconddecay:
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, network.parameters()),lr = opt.lrate/4)
torch.nn.utils.clip_grad_norm_(filter(lambda p: p.requires_grad, network.parameters()), opt.max_grad_norm/4)
else:
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, network.parameters()),lr = opt.lrate/10)
torch.nn.utils.clip_grad_norm_(filter(lambda p: p.requires_grad, network.parameters()), opt.max_grad_norm/10)
for batch_id, batch in enumerate(dataloader_train):
network.anneal(epoch_id, batch_id)
if type(batch) == list:
batch = [b.cuda() for b in batch]
voxel, _ = batch
# xs.requires_grad_(True)
# xo.requires_grad_(True)
else:
batch = batch.cuda()
voxel = batch
optimizer.zero_grad()
log = network(voxel, module_actives=loss_scheduler.module_actives)
loss = 0
for loss_name in LOSS_LIST:
if loss_name in loss_scheduler.current_loss_names:
loss += LOSS_WEIGHTS[loss_name] * log[loss_name]
elif loss_name in log.keys():
loss += 0 * log[loss_name]
else:
log[loss_name] = torch.tensor(0.0).to(voxel.device)
loss += log[loss_name]
train_log.add(loss_name, log[loss_name].item())
loss.backward()
'''
#### when you want to monitor gradient norm
total_norm = 0
for p in filter(lambda p: p.requires_grad, network.parameters()):
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** (1. / 2)
'''
optimizer.step()
display_it("train", "total loss", opt, epoch_id, batch_id, loss.item())
#==================================================================================
#==================================================================================
# validation
#==================================================================================
if opt.pretrained_mode == 0:
log_voxel, log_pred_voxel, log_keypoints, log_pred_gen, log_keypoints_gen = None, None, None, None, None
log_affinity = None
log_y_prims, log_gt_frames = None, None
elif opt.pretrained_mode == 1 or opt.pretrained_mode == 2:
log_voxel, log_pred_voxel, log_keypoints, log_keypoints_recon, log_keypoints_gen = None, None, None, None, None
log_affinity, log_A, log_A_hats, log_A_hats_gen, log_pred_gen, = None, None, None, None, None
first_flag = False
with torch.no_grad():
network.eval()
for batch_id, batch in enumerate(dataloader_valid):
if type(batch) == list:
batch = [b.cuda() for b in batch]
voxel, gt_kypt = batch
else:
batch = batch.cuda()
voxel = batch
log = network(voxel, module_actives=loss_scheduler.module_actives)
if not first_flag and opt.pretrained_mode == 0: # logging first batch
log_voxel = voxel
log_pred_voxel = log['recon'] if 'recon' in log.keys() else None
log_keypoints = log['keypoints'] if 'keypoints' in log.keys() else None
log_y_prims = log['y_prims'] if 'y_prims' in log.keys() else None
log_affinity = log['affinity'] if 'affinity' in log.keys() else None
log_gt_frames = log['gt_frames'] if 'gt_frames' in log.keys() else None
log_g = network.generate(voxel, module_actives=loss_scheduler.module_actives)
log_pred_gen = log_g['gen'] if 'gen' in log_g.keys() else None
log_keypoints_gen = log_g['keypoints'] if 'keypoints' in log_g.keys() else None
first_flag = True
elif not first_flag and (opt.pretrained_mode == 1 or opt.pretrained_mode == 2):
log_voxel = voxel
log_keypoints = log['keypoints'] if 'keypoints' in log.keys() else None
log_keypoints_recon = log['kypt_recon'] if 'kypt_recon' in log.keys() else None
log_affinity = log['affinity'] if 'affinity' in log.keys() else None
log_A = log['A'] if 'A' in log.keys() else None
log_A_hats = log['A_hats'] if 'A_hats' in log.keys() else None
log_g = network.generate(voxel, module_actives=loss_scheduler.module_actives)
log_pred_gen = log_g['gen'] if 'gen' in log_g.keys() else None
log_keypoints_gen = log_g['keypoints'] if 'keypoints' in log_g.keys() else None
log_A_hats_gen = log_g['A_hats'] if 'A_hats' in log_g.keys() else None
first_flag = True
loss = 0
for loss_name in LOSS_LIST:
if loss_name == 'norm_cons':
continue
if loss_name in loss_scheduler.current_loss_names:
loss += LOSS_WEIGHTS[loss_name] * log[loss_name]
elif loss_name in log.keys():
loss += 0 * log[loss_name]
else:
log[loss_name] = torch.tensor(0.0).to(voxel.device)
loss += log[loss_name]
valid_log.add(loss_name, log[loss_name].item())
display_it("valid", "total loss", opt, epoch_id, batch_id, loss.item())
# ==================================================================================
if opt.is_eval:
params = dict(
keypoints=log['keypoints'].clone(),
gt_keypoints=gt_kypt.detach()
)
for eval_name in eval_metrics:
temp_log = evaluate(eval_name, scores, params)
scores[eval_name] = temp_log['scores']
scores_log[eval_name] = temp_log['scores_log']
display_it("eval", eval_name, opt, epoch_id, batch_id, scores_log[eval_name])
valid_log.add(eval_name, scores_log[eval_name].item())
#==================================================================================
#==================================================================================
# saving loss and parameters
#==================================================================================
train_log.reset()
valid_log.reset()
'''
tensorboard logging
'''
# scalars
if epoch_id % opt.log_every == 0:
for loss_name in LOSS_LIST:
writer.add_scalar('train/%s' % loss_name, train_log.history[-1][loss_name], epoch_id)
writer.add_scalar('valid/%s' % loss_name, valid_log.history[-1][loss_name], epoch_id)
if opt.is_eval:
for eval_name in eval_metrics:
writer.add_scalar('eval/%s' % eval_name, valid_log.history[-1][eval_name], epoch_id)
# visualizing
if opt.pretrained_mode == 0:
if epoch_id % opt.log_gif_every == 0 or epoch_id < 10:
with torch.no_grad():
gif_recon, gif_keypoints, gif_graphs = None, None, None
if log_pred_voxel is not None and log_keypoints is not None:
gif_recon = vis_recon(
vox=log_voxel,
recon=log_pred_voxel,
logger_path=logger_path,
nepoch=epoch_id,
log_num=opt.log_gif_num,
group='track'
)
gif_keypoints = vis_keypoints(
vox=log_voxel,
keypoints=log_keypoints,
logger_path=logger_path,
nepoch=epoch_id,
affinity=log_affinity,
log_num=opt.log_gif_num,
group='track'
)
for i in range(opt.log_gif_num):
if gif_recon is not None:
writer.add_video(f'track/recon_{i}', gif_recon[i][None], epoch_id)
if gif_keypoints is not None:
writer.add_video(f'track/keypoints_{i}', gif_keypoints[i][None], epoch_id)
gif_recon, gif_keypoints, gif_graphs = None, None, None
if log_pred_gen is not None and log_keypoints_gen is not None:
gif_recon = vis_recon(
vox=log_voxel,
recon=log_pred_gen,
logger_path=logger_path,
nepoch=epoch_id,
log_num=opt.log_gif_num,
group='gen',
Tcond=opt.Tcond
)
gif_keypoints = vis_keypoints(
vox=log_voxel,
keypoints=log_keypoints_gen,
logger_path=logger_path,
nepoch=epoch_id,
affinity=log_affinity,
log_num=opt.log_gif_num,
group='gen',
Tcond=opt.Tcond
)
for i in range(opt.log_gif_num):
if gif_recon is not None:
writer.add_video(f'gen/recon_{i}', gif_recon[i][None], epoch_id)
if gif_keypoints is not None:
writer.add_video(f'gen/keypoints_{i}', gif_keypoints[i][None], epoch_id)
elif opt.pretrained_mode == 1 or opt.pretrained_mode == 2:
if epoch_id % opt.log_gif_every == 0:
with torch.no_grad():
gif_keypoints_recon, gif_graph_recon = None, None
gif_keypoints = vis_keypoints(
vox=log_voxel,
keypoints=log_keypoints,
logger_path=logger_path,
nepoch=epoch_id,
affinity=log_affinity,
log_num=opt.log_gif_num,
group='track'
)
if log_keypoints_recon is not None:
gif_keypoints_recon = vis_keypoints(
vox=log_voxel,
keypoints=log_keypoints_recon,
logger_path=logger_path,
nepoch=epoch_id,
affinity=log_affinity,
log_num=opt.log_gif_num,
group='track'
)
gif_keypoints_recon = torch.cat([gif_keypoints, gif_keypoints_recon], dim=-1)
if log_A is not None and log_A_hats is not None:
gif_keypoints_A = vis_keypoints(
vox=log_voxel,
keypoints=log_keypoints_recon,
logger_path=logger_path,
nepoch=epoch_id,
affinity=log_A,
log_num=opt.log_gif_num,
group='track',
mode='A'
)
gif_keypoints_A_hats = vis_keypoints(
vox=log_voxel,
keypoints=log_keypoints_recon,
logger_path=logger_path,
nepoch=epoch_id,
affinity=log_A_hats,
log_num=opt.log_gif_num,
group='track',
mode='A_hats'
)
gif_graph_recon = torch.cat([gif_keypoints_A, gif_keypoints_A_hats], dim=-1)
for i in range(opt.log_gif_num):
if gif_keypoints_recon is not None:
writer.add_video(f'track/kypt_recon_{i}', gif_keypoints_recon[i][None], epoch_id)
if gif_graph_recon is not None:
writer.add_video(f'track/graph_recon_{i}', gif_graph_recon[i][None], epoch_id)
gif_keypoints_recon, gif_recon = None, None
if log_keypoints_gen is not None:
gif_keypoints_recon = vis_keypoints(
vox=log_voxel,
keypoints=log_keypoints_gen,
logger_path=logger_path,
nepoch=epoch_id,
affinity=log_affinity,
log_num=opt.log_gif_num,
group='gen',
Tcond=opt.Tcond
)
gif_keypoints_recon = torch.cat([gif_keypoints, gif_keypoints_recon], dim=-1)
if log_pred_gen is not None:
gif_recon = vis_recon(
vox=log_voxel,
recon=log_pred_gen,
logger_path=logger_path,
nepoch=epoch_id,
log_num=opt.log_gif_num,
group='gen',
Tcond=opt.Tcond
)
for i in range(opt.log_gif_num):
if gif_recon is not None:
writer.add_video(f'gen/recon_{i}', gif_recon[i][None], epoch_id)
if gif_keypoints_recon is not None:
writer.add_video(f'gen/kypt_recon_{i}', gif_keypoints_recon[i][None], epoch_id)
'''
saving checkpoints
'''
if epoch_id % opt.save_every == 0:
# save path files
if len(os.listdir(os.path.join(logger_path, 'epochs'))) == opt.save_que_len:
ckpt_list = os.listdir(os.path.join(logger_path, 'epochs'))
ckpt_list.sort(key=lambda x: int(x))
shutil.rmtree(os.path.join(logger_path, 'epochs', ckpt_list[0]))
if os.path.exists(os.path.join(logger_path, 'gifs', ckpt_list[0])):
shutil.rmtree(os.path.join(logger_path, 'gifs', ckpt_list[0]))
os.makedirs(os.path.join(logger_path, 'epochs', str(epoch_id)), exist_ok=True)
torch.save(network.state_dict(), '%s/epochs/%d/network.pth' % (logger_path, epoch_id))
#==================================================================================i