forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_modeling_bros.py
437 lines (389 loc) · 15.7 KB
/
test_modeling_bros.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Bros model. """
import copy
import unittest
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import is_torch_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
BrosConfig,
BrosForTokenClassification,
BrosModel,
BrosSpadeEEForTokenClassification,
BrosSpadeELForTokenClassification,
)
from transformers.models.bros.modeling_bros import (
BROS_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class BrosModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_bbox_first_token_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=64,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_bbox_first_token_mask = use_bbox_first_token_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
bbox = ids_tensor([self.batch_size, self.seq_length, 8], 1)
# Ensure that bbox is legal
for i in range(bbox.shape[0]):
for j in range(bbox.shape[1]):
if bbox[i, j, 3] < bbox[i, j, 1]:
t = bbox[i, j, 3]
bbox[i, j, 3] = bbox[i, j, 1]
bbox[i, j, 1] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
t = bbox[i, j, 2]
bbox[i, j, 2] = bbox[i, j, 0]
bbox[i, j, 0] = t
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
bbox_first_token_mask = None
if self.use_bbox_first_token_mask:
bbox_first_token_mask = torch.ones([self.batch_size, self.seq_length], dtype=torch.bool).to(torch_device)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
token_labels = None
if self.use_labels:
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
initial_token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
subsequent_token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
config = self.get_config()
return (
config,
input_ids,
bbox,
token_type_ids,
input_mask,
bbox_first_token_mask,
token_labels,
initial_token_labels,
subsequent_token_labels,
)
def get_config(self):
return BrosConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
def create_and_check_model(
self,
config,
input_ids,
bbox,
token_type_ids,
input_mask,
bbox_first_token_mask,
token_labels,
initial_token_labels,
subsequent_token_labels,
):
model = BrosModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, bbox=bbox, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, bbox=bbox, token_type_ids=token_type_ids)
result = model(input_ids, bbox=bbox)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_token_classification(
self,
config,
input_ids,
bbox,
token_type_ids,
input_mask,
bbox_first_token_mask,
token_labels,
initial_token_labels,
subsequent_token_labels,
):
config.num_labels = self.num_labels
model = BrosForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids, bbox=bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_spade_ee_token_classification(
self,
config,
input_ids,
bbox,
token_type_ids,
input_mask,
bbox_first_token_mask,
token_labels,
initial_token_labels,
subsequent_token_labels,
):
config.num_labels = self.num_labels
model = BrosSpadeEEForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
bbox=bbox,
attention_mask=input_mask,
bbox_first_token_mask=bbox_first_token_mask,
token_type_ids=token_type_ids,
initial_token_labels=token_labels,
subsequent_token_labels=token_labels,
)
self.parent.assertEqual(result.initial_token_logits.shape, (self.batch_size, self.seq_length, self.num_labels))
self.parent.assertEqual(
result.subsequent_token_logits.shape, (self.batch_size, self.seq_length, self.seq_length + 1)
)
def create_and_check_for_spade_el_token_classification(
self,
config,
input_ids,
bbox,
token_type_ids,
input_mask,
bbox_first_token_mask,
token_labels,
initial_token_labels,
subsequent_token_labels,
):
config.num_labels = self.num_labels
model = BrosSpadeELForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
bbox=bbox,
attention_mask=input_mask,
bbox_first_token_mask=bbox_first_token_mask,
token_type_ids=token_type_ids,
labels=token_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.seq_length + 1))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
bbox,
token_type_ids,
input_mask,
bbox_first_token_mask,
token_labels,
initial_token_labels,
subsequent_token_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"bbox": bbox,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class BrosModelTest(ModelTesterMixin, unittest.TestCase):
test_pruning = False
test_torchscript = False
test_mismatched_shapes = False
all_model_classes = (
(
BrosForTokenClassification,
BrosSpadeEEForTokenClassification,
BrosSpadeELForTokenClassification,
BrosModel,
)
if is_torch_available()
else ()
)
all_generative_model_classes = () if is_torch_available() else ()
def setUp(self):
self.model_tester = BrosModelTester(self)
self.config_tester = ConfigTester(self, config_class=BrosConfig, hidden_size=37)
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if return_labels:
if model_class.__name__ in ["BrosForTokenClassification", "BrosSpadeELForTokenClassification"]:
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length),
dtype=torch.long,
device=torch_device,
)
inputs_dict["bbox_first_token_mask"] = torch.ones(
[self.model_tester.batch_size, self.model_tester.seq_length],
dtype=torch.bool,
device=torch_device,
)
elif model_class.__name__ in ["BrosSpadeEEForTokenClassification"]:
inputs_dict["initial_token_labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length),
dtype=torch.long,
device=torch_device,
)
inputs_dict["subsequent_token_labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length),
dtype=torch.long,
device=torch_device,
)
inputs_dict["bbox_first_token_mask"] = torch.ones(
[self.model_tester.batch_size, self.model_tester.seq_length],
dtype=torch.bool,
device=torch_device,
)
return inputs_dict
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_multi_gpu_data_parallel_forward(self):
super().test_multi_gpu_data_parallel_forward()
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_spade_ee_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_spade_ee_token_classification(*config_and_inputs)
def test_for_spade_el_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_spade_el_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in BROS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = BrosModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def prepare_bros_batch_inputs():
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
bbox = torch.tensor(
[
[
[0.0000, 0.0000, 0.0000, 0.0000],
[0.5223, 0.5590, 0.5787, 0.5720],
[0.5853, 0.5590, 0.6864, 0.5720],
[0.5853, 0.5590, 0.6864, 0.5720],
[0.1234, 0.5700, 0.2192, 0.5840],
[0.2231, 0.5680, 0.2782, 0.5780],
[0.2874, 0.5670, 0.3333, 0.5780],
[0.3425, 0.5640, 0.4344, 0.5750],
[0.0866, 0.7770, 0.1181, 0.7870],
[0.1168, 0.7770, 0.1522, 0.7850],
[0.1535, 0.7750, 0.1864, 0.7850],
[0.1890, 0.7750, 0.2572, 0.7850],
[1.0000, 1.0000, 1.0000, 1.0000],
],
[
[0.0000, 0.0000, 0.0000, 0.0000],
[0.4396, 0.6720, 0.4659, 0.6850],
[0.4698, 0.6720, 0.4843, 0.6850],
[0.1575, 0.6870, 0.2021, 0.6980],
[0.2047, 0.6870, 0.2730, 0.7000],
[0.1299, 0.7010, 0.1430, 0.7140],
[0.1299, 0.7010, 0.1430, 0.7140],
[0.1562, 0.7010, 0.2441, 0.7120],
[0.1562, 0.7010, 0.2441, 0.7120],
[0.2454, 0.7010, 0.3150, 0.7120],
[0.3176, 0.7010, 0.3320, 0.7110],
[0.3333, 0.7000, 0.4029, 0.7140],
[1.0000, 1.0000, 1.0000, 1.0000],
],
]
)
input_ids = torch.tensor(
[
[101, 1055, 8910, 1012, 5719, 3296, 5366, 3378, 2146, 2846, 10807, 13494, 102],
[101, 2112, 1997, 3671, 6364, 1019, 1012, 5057, 1011, 4646, 2030, 2974, 102],
]
)
return input_ids, bbox, attention_mask
@require_torch
class BrosModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = BrosModel.from_pretrained("jinho8345/bros-base-uncased").to(torch_device)
input_ids, bbox, attention_mask = prepare_bros_batch_inputs()
with torch.no_grad():
outputs = model(
input_ids.to(torch_device),
bbox.to(torch_device),
attention_mask=attention_mask.to(torch_device),
return_dict=True,
)
# verify the logits
expected_shape = torch.Size((2, 13, 768))
self.assertEqual(outputs.last_hidden_state.shape, expected_shape)
expected_slice = torch.tensor(
[[-0.3074, 0.1363, 0.3143], [0.0925, -0.1155, 0.1050], [0.0221, 0.0003, 0.1285]]
).to(torch_device)
torch.set_printoptions(sci_mode=False)
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))