-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
34 lines (29 loc) · 1.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from flask import Flask, request, jsonify, render_template
from flask.logging import create_logger
import logging
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
app = Flask(__name__)
LOG = create_logger(app)
LOG.setLevel(logging.INFO)
model = LinearRegression()
df = pd.read_csv('national-history-update.csv')
X = df[['day', 'totalTestResultsIncrease']].values
y = df['positiveIncrease'].values
model.fit(X, y)
@app.route("/")
def home():
return render_template("index.html")
@app.route("/predict", methods=['POST'])
def predict():
if len(request.form) == 0:
json_payload = request.json
prediction = model.predict([[json_payload['day'], json_payload['total']]])
return jsonify({'prediction': prediction[0]})
day = request.form.get('day')
total = request.form.get('total')
prediction = model.predict([[day, total]])
return render_template("index.html",prediction_text=f"Predicted positive cases: {prediction[0]}")
if __name__ == "__main__":
app.run(host='127.0.0.1', port=8080, debug=True)