-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpointless.scm
193 lines (169 loc) · 7.58 KB
/
pointless.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
(import (chicken string) srfi-1)
(define-syntax ▽ (syntax-rules () ((_ . α) (define . α))))
(define-syntax λ (syntax-rules () ((_ . α) (lambda . α))))
; delay (f α) = (λ (ω) (f α ω))
(define-syntax delay
(syntax-rules ()
((_ (f (g ...))) (λ (α) (f ((delay? (g ...)) α))))
((_ (f ...)) (λ (α) (f ... α)))
((_ f ...) (λ (α) (f ... α)))))
; application (f α) = (f α)
(define (application f α) (f α))
; function composition (f g α) = (f (g α))
(define-syntax delay?
(syntax-rules (∘ λ Λ &&& *** ◁ ◀ ∴ ∵ ? ?… ⇒ ⇐ ∈ ∀ ~)
((_ (∘ α ...)) (composition α ...))
((_ (λ α ...)) (lambda α ...))
((_ (Λ α ...)) (cut α ...))
((_ (&&& α ...)) (fanout α ...))
((_ (*** α ...)) (split-strong α ...))
((_ (◁ α ...)) (hook α ...))
((_ (◀ α ...)) (dyhook α ...))
((_ (∴ α ...)) (fork α ...))
((_ (∵ α ...)) (dyfork α ...))
((_ (? α ...)) (tacit-if α ...))
((_ (?… α ...)) (match α ...))
((_ (⇒ α ...)) (tacit-map α ...))
((_ (⇐ α ...)) (tacit-filter α ...))
((_ (∈ α ...)) (tacit-find α ...))
((_ (∀ α ...)) (tacit-for-each α ...))
((_ (~ α ...)) (flipping α ...))
((_ f) (delay f))))
(define-syntax delay-params
(syntax-rules ()
((_ f) (list (delay? f)))
((_ f g ...) (cons (delay? f) (delay-params g ...)))))
(define-syntax composition
(syntax-rules ()
((_ f ...) (λ (α) (foldr application α (delay-params f ...))))))
; fanout (f g α) = '((f α) (g α))
(define-syntax fanout
(syntax-rules ()
((_ f ...) (λ (α) (map (λ (ω) (ω α)) (delay-params f ...))))))
; split strong (f g '(α ω)) = '((f α) (g ω))
(define-syntax split-strong
(syntax-rules ()
((_ f ...) (λ (α) (map application (delay-params f ...) α)))))
; monadic hook (f g α) = (f α (g α))
(define-syntax hook
(syntax-rules ()
((_ (f ...) g ...) (λ (α) ((composition (f ... α) g ...) α)))
((_ f g ...) (λ (α) ((composition (f α) g ...) α)))))
; dyadic hook (f g α ω) = (f α (g ω))
(define-syntax dyhook
(syntax-rules ()
((_ (f ...) g ...) (λ (α ω) ((composition (f ... α) g ...) ω)))
((_ f g ...) (λ (α ω) ((composition (f α) g ...) ω)))))
; monadic fork (f g h α) = (f (g α) (h α))
(define-syntax fork
(syntax-rules ()
((_ (f ...) g ...) (λ (α) ((composition (apply f ...) (&&& g ...)) α)))
((_ f g ...) (λ (α) ((composition (apply f) (&&& g ...)) α)))))
; dyadic fork (f g h α ω) = (f (g α) (h ω))
(define-syntax dyfork
(syntax-rules ()
((_ f g h ...) (λ (α ω) ((∴ f (∘ g ↑) (∘ h ↓↑) ...) (list α ω))))))
; flip (f α ω) = (f ω α)
(define-syntax flipping
(syntax-rules ()
((_ f α ...) (λ (ω) (f ω α ...)))))
; point-free if
(define-syntax tacit-if
(syntax-rules ()
((_ p f g) (λ (α) (if ((delay? p) α) ((delay? f) α) ((delay? g) α))))))
; point-free cond
(define-syntax match
(syntax-rules (…)
((_ α (p f) ... (… g))
(cond (((delay? p) α) ((delay? f) α)) ... (else ((delay? g) α))))
((_ α (p f) ...)
(cond (((delay? p) α) ((delay? f) α)) ...))))
; general point-free constructor for higher order functions
(define-syntax tacit-f
(syntax-rules ()
((_ f g α ...) (λ (ω) (f (delay? g) α ... ω)))))
; point-free map, filter, find, for-each
(define-syntax tacit-map (syntax-rules () ((_ . α) (tacit-f map . α))))
(define-syntax tacit-filter (syntax-rules () ((_ . α) (tacit-f filter . α))))
(define-syntax tacit-find (syntax-rules () ((_ . α) (tacit-f find . α))))
(define-syntax tacit-for-each(syntax-rules () ((_ . α) (tacit-f for-each . α))))
; identity α = α
(define (id α) α)
; const (α ω) = α
(define (const α ω) α)
; uncurrying (f '(α ω) = (f α ω)
(define (uncurry f) (λ (α) (apply f α)))
; "and" as a normal function (AN)
(define (∧ α ω) (and α ω))
; "or" as a normal function (OR)
(define (∨ α ω) (or α ω))
; synonyms (poorly ordered functions will be flipped mercilessly)
(define-syntax ⊃ (syntax-rules () ((_ . α) (delay . α)))) ;)C
(define-syntax ∘ (syntax-rules () ((_ . α) (composition . α)))) ;Ob
(define-syntax ◁ (syntax-rules () ((_ . α) (hook . α)))) ;Tl
(define-syntax ◀ (syntax-rules () ((_ . α) (dyhook . α)))) ;PL
(define-syntax ∴ (syntax-rules () ((_ . α) (fork . α)))) ;.:
(define-syntax ∵ (syntax-rules () ((_ . α) (dyfork . α)))) ;:.
(define-syntax &&& (syntax-rules () ((_ . α) (fanout . α))))
(define-syntax *** (syntax-rules () ((_ . α) (split-strong . α))))
(define-syntax Λ (syntax-rules () ((_ . α) (cut . α)))) ;L*
(define-syntax ⇒ (syntax-rules () ((_ . α) (tacit-map . α)))) ;=>
(define-syntax ⇐ (syntax-rules () ((_ . α) (tacit-filter . α)))) ;<=
(define-syntax ∈ (syntax-rules () ((_ . α) (tacit-find . α)))) ;(-
(define-syntax ∀ (syntax-rules () ((_ . α) (tacit-for-each . α)))) ;FA
(define-syntax ? (syntax-rules () ((_ . α) (tacit-if . α))))
(define-syntax ~ (syntax-rules () ((_ . α) (flipping . α))))
(define-syntax ?… (syntax-rules () ((_ . α) (match . α))))
(define ⊥ id) ;-T
(define ∞ const) ;00
(define ◇ append) ;Dw
(define ◆ conc) ;Db
(define s⊥□ string-split) ;OS
(define □⊥s string-intersperse)
(define ≡ equal?) ;=3
(define ≠ (λ (α ω) (not (≡ α ω)))) ;!=
(define ! not)
(define ∅ '()) ;/0
(define ↑ car) ;-!
(define ↑↑ caar)
(define ↑↑↑ caaar)
(define ↓ cdr) ;-v
(define ↓↓ cddr)
(define ↓↓↓ cddr)
(define ↓↑ cadr)
(define ↓↓↑ caddr)
(define ↓↓↓↑ cadddr)
(define ↓↑↑ caadr)
(define ↓↑↑↑ caaadr)
(define ↑. (flip take))
(define ↓. (flip drop))
(define ↓… last)
(define ⊇ uncurry) ;)_
(define ∷ cons) ;::
(define → foldr) ;->
(define ← foldl) ;<-
(define ∋ (flip member)) ;)-
(define ι iota) ;i*
(define ρ length) ;r*
(define ⌐ flatten) ;NI
(define ⇔ reverse) ;==
(define ∂ assoc) ;dP
(define $ apply)
(define ⌈ ceiling) ;<7
(define ⌊ floor) ;7<
(define ÷ /) ;-:
(define × *) ;*X
(define ^ expt)
(define v⊥x vector->list)
(define x⊥v list->vector)
(define s⊥x string->list)
(define x⊥s list->string)
(define c⊥n char->integer)
(define n⊥c integer->char)
(define c⊥C char-upcase)
(define C⊥c char-downcase)
(define s⊥n string->number)
(define n⊥s number->string)
(define v? vector?)
(define p? pair?)
(define ∅? null?)