-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_to_tensorrt.py
173 lines (132 loc) · 4.72 KB
/
torch_to_tensorrt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import cv2
import numpy as np
import os
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from ruamel.yaml import YAML
from dataloaders import KITTIRawLoader as KRL
from stereo import StereoTRT
import torch_tensorrt
import pdb
torch.backends.cudnn.benchmark = True
torch.set_grad_enabled(False)
config = 'cfg_coex.yaml'
version = 0 # CoEx
vid_date = "2011_09_26"
vid_num = '0093'
half_precision = False
def load_configs(path):
cfg = YAML().load(open(path, 'r'))
backbone_cfg = YAML().load(
open(cfg['model']['stereo']['backbone']['cfg_path'], 'r'))
cfg['model']['stereo']['backbone'].update(backbone_cfg)
return cfg
def postprocess(outputs):
cost, spx_pred = outputs
b, _, h, w = spx_pred.shape
corr, ind = cost.squeeze().sort(0, True)
corr = F.softmax(corr[:2], 0)
disp = ind[:2]
disp_ = torch.mul(corr, disp)
disp_4 = disp_[0] + disp_[1]
disp_4 = disp_4.reshape(b, 1, disp_4.shape[-2], disp_4.shape[-1])
x = F.pad(disp_4, (1,1,1,1))
feat = torch.cat([
x[:, :, :-2, :-2],
x[:, :, :-2, 1:-1],
x[:, :, :-2, 2:],
x[:, :, 1:-1, :-2],
x[:, :, 1:-1, 1:-1],
x[:, :, 1:-1, 2:],
x[:, :, 2:, :-2],
x[:, :, 2:, 1:-1],
x[:, :, 2:, 2:],
], 1)
feat = torch.repeat_interleave(feat, 4, 2)
feat = torch.repeat_interleave(feat, 4, 3)
disp_1a = (feat*spx_pred)
disp_1 = disp_1a.sum(1)
disp_1 = disp_1*4 # + 1.5
return disp_1[0]
if __name__ == '__main__':
cfg = load_configs(
'./configs/stereo/{}'.format(config))
cfg['model']['name'] = 'CoExTRT'
cfg['model']['stereo']['name'] = 'CoExTRT'
ckpt = '{}/CoEx/version_{}/checkpoints/last.ckpt'.format(
'logs/stereo', version)
cfg['stereo_ckpt'] = ckpt
stereo = StereoTRT.load_from_checkpoint(cfg['stereo_ckpt'],
strict=False,
cfg=cfg).cuda()
stereo.eval()
if half_precision:
enabled_precisions = {torch.float, torch.half}
dtype = torch.half
stereo = stereo.half()
else:
enabled_precisions = {torch.float}
dtype = torch.float
trt_model = torch_tensorrt.compile(
stereo, inputs = [torch_tensorrt.Input((2, 3, 384, 1248), dtype=dtype)],
enabled_precisions = enabled_precisions, # Run with FP32
# workspace_size = 1 << 22
)
if not os.path.exists("zoo/tensorrt"):
os.makedirs("zoo/tensorrt")
torch.jit.save(trt_model, "zoo/tensorrt/trt_ts_module.ts")
left_cam, right_cam = KRL.listfiles(
cfg,
vid_date,
vid_num,
True)
cfg['training']['th'] = 0
cfg['training']['tw'] = 0
kitti_train = KRL.ImageLoader(
left_cam, right_cam, cfg, training=True, demo=True)
kitti_train = DataLoader(
kitti_train, batch_size=1,
num_workers=4, shuffle=False, drop_last=False)
fps_list = np.array([])
for i, batch in enumerate(kitti_train):
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
imgL, imgR = batch['imgL'].cuda(), batch['imgR'].cuda()
imgLRaw = batch['imgLRaw']
im = torch.cat([imgL, imgR], 0)
h, w = im.shape[-2:]
h_pad = 384-h
w_pad = 1248-w
im = F.pad(im, (0, w_pad, 0, h_pad))
end.record()
torch.cuda.synchronize()
runtime = start.elapsed_time(end)
print('Data Preparation: {:.3f}'.format(runtime))
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
# disp = postprocess(stereo(im.type(dtype)))[:h, :w]
disp = postprocess(trt_model(im.type(dtype)))[:h, :w]
end.record()
torch.cuda.synchronize()
runtime = start.elapsed_time(end)
# print('Stereo runtime: {:.3f}'.format(runtime))
fps = 1000/runtime
fps_list = np.append(fps_list, fps)
if len(fps_list) > 5:
fps_list = fps_list[-5:]
avg_fps = np.mean(fps_list)
print('Stereo runtime: {:.3f}'.format(1000/avg_fps))
disp_np = (2*disp).data.cpu().numpy().astype(np.uint8)
disp_np = cv2.applyColorMap(disp_np, cv2.COLORMAP_MAGMA)
image_np = (imgLRaw[0].permute(1, 2, 0).numpy()).astype(np.uint8)
out_img = np.concatenate((image_np, disp_np), 0)
cv2.putText(
out_img,
"%.1f fps" % (avg_fps),
(10, image_np.shape[0]+30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
cv2.imshow('img', out_img)
cv2.waitKey(1)