-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoex_plv1.py
242 lines (210 loc) · 8.61 KB
/
coex_plv1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import time
import rospy
import os
import numpy as np
import dev.kitti_util as kitti_util
import ctypes
import struct
import cv2
from sensor_msgs.msg import PointCloud2, PointField, Image, CameraInfo
#########################################################
## COEX MAIN INIT
import torch
from ruamel.yaml import YAML
from stereo import Stereo
torch.backends.cudnn.benchmark = True
torch.set_grad_enabled(False)
config = 'cfg_coex.yaml'
version = 0 # CoEx
half_precision = True
def load_configs(path):
cfg = YAML().load(open(path, 'r'))
backbone_cfg = YAML().load(
open(cfg['model']['stereo']['backbone']['cfg_path'], 'r'))
cfg['model']['stereo']['backbone'].update(backbone_cfg)
return cfg
#########################################################
def png_to_bin(left_img, right_img, calib):
##png to npy################################################
cv2.imwrite('dev/input.png',left_img)
## COEX Start ####################################
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
tl = left_img.transpose((2,0,1))
tr = right_img.transpose((2,0,1))
imgL = torch.unsqueeze(torch.Tensor(tl), 0).cuda()
imgR = torch.unsqueeze(torch.Tensor(tr), 0).cuda()
end.record()
torch.cuda.synchronize()
runtime = start.elapsed_time(end)
print('Data Preparation: {:.3f}'.format(runtime))
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=half_precision):
img = torch.cat([imgL, imgR], 0)
disp = pose_ssstereo(img, training=False)
end.record()
torch.cuda.synchronize()
runtime = start.elapsed_time(end)
# print('Stereo runtime: {:.3f}'.format(runtime))
global fps_list
fps = 1000/runtime
fps_list = np.append(fps_list, fps)
if len(fps_list) > 5:
fps_list = fps_list[-5:]
avg_fps = np.mean(fps_list)
print('Stereo runtime: {:.3f}'.format(1000/avg_fps))
disp_np = (2*disp[0]).data.cpu().numpy().astype(np.uint8)
disparity_map = disp_np
## COEX End ####################################
cv2.imwrite('dev/disparity_end.png', disparity_map)
##npy to bin################################################
mycalib = kitti_util.Calibration(calib)
disp_map = (disparity_map*256).astype(np.uint16)/256.
def project_disp_to_points(calib00, disp, max_high):
disp[disp < 0] = 0
baseline = 0.54
mask = disp > 0
depth = calib00.f_u * baseline / (disp + 1. - mask)
rows, cols = depth.shape
c, r = np.meshgrid(np.arange(cols), np.arange(rows))
points = np.stack([c, r, depth])
points = points.reshape((3, -1))
points = points.T
points = points[mask.reshape(-1)]
cloud = calib00.project_image_to_velo(points)
valid = (cloud[:, 0] >= 0) & (cloud[:, 2] < max_high)
return cloud[valid]
# max_high ==1
lidar = project_disp_to_points(mycalib, disp_map, 1)
lidar = np.concatenate([lidar, np.ones((lidar.shape[0], 1))], 1)
lidar = lidar.astype(np.float32)
return lidar
def sparsify(mylidar):
def pto_ang_map(velo_points, H=64, W=512, slice=1):
"""
:param H: the row num of depth map, could be 64(default), 32, 16
:param W: the col num of depth map
:param slice: output every slice lines
"""
dtheta = np.radians(0.4 * 64.0 / H)
dphi = np.radians(90.0 / W)
x, y, z, i = velo_points[:, 0], velo_points[:, 1], velo_points[:, 2], velo_points[:, 3]
d = np.sqrt(x ** 2 + y ** 2 + z ** 2)
r = np.sqrt(x ** 2 + y ** 2)
d[d == 0] = 0.000001
r[r == 0] = 0.000001
phi = np.radians(45.) - np.arcsin(y / r)
phi_ = (phi / dphi).astype(int)
phi_[phi_ < 0] = 0
phi_[phi_ >= W] = W - 1
theta = np.radians(2.) - np.arcsin(z / d)
theta_ = (theta / dtheta).astype(int)
theta_[theta_ < 0] = 0
theta_[theta_ >= H] = H - 1
depth_map = - np.ones((H, W, 4))
depth_map[theta_, phi_, 0] = x
depth_map[theta_, phi_, 1] = y
depth_map[theta_, phi_, 2] = z
depth_map[theta_, phi_, 3] = i
depth_map = depth_map[0::slice, :, :]
depth_map = depth_map.reshape((-1, 4))
depth_map = depth_map[depth_map[:, 0] != -1.0]
return depth_map
pc_velo = mylidar.reshape((-1, 4))
valid_inds = (pc_velo[:, 0] < 120) & \
(pc_velo[:, 0] >= 0) & \
(pc_velo[:, 1] < 50) & \
(pc_velo[:, 1] >= -50) & \
(pc_velo[:, 2] < 1.5) & \
(pc_velo[:, 2] >= -2.5)
pc_velo = pc_velo[valid_inds]
# depth, width, height
sparse_points = pto_ang_map(pc_velo, H=64, W=512, slice=1)
return sparse_points.astype(np.float32)
def bin_to_pcl(bin):
def paint_points(points, color=[192,0,0]):
color = np.array([color])
new_pts = np.zeros([points.shape[0],6])
new_pts[:,:3] = points[:,:3]
new_pts[:, 3:] = new_pts[:, 3:] + color
return new_pts
points = bin.reshape((-1, 4))
points = paint_points(points)
return points
def pcl_to_ros(pcl_array):
ros_msg = PointCloud2()
ros_msg.header.stamp = rospy.Time.now()
ros_msg.header.frame_id = "world"
ros_msg.height = 1
ros_msg.width = len(pcl_array)
ros_msg.fields.append(PointField(name="x", offset=0, datatype=PointField.FLOAT32, count=1))
ros_msg.fields.append(PointField(name="y", offset=4, datatype=PointField.FLOAT32, count=1))
ros_msg.fields.append(PointField(name="z", offset=8, datatype=PointField.FLOAT32, count=1))
ros_msg.fields.append(PointField(name="rgb", offset=16, datatype=PointField.FLOAT32, count=1))
ros_msg.is_bigendian = False
ros_msg.point_step = 32
ros_msg.row_step = ros_msg.point_step * ros_msg.width * ros_msg.height
ros_msg.is_dense = False
buffer = []
for data in pcl_array:
s = struct.pack('>f', data[3])
i = struct.unpack('>l', s)[0]
pack = ctypes.c_uint32(i).value
r = (pack & 0x00FF0000) >> 16
g = (pack & 0x0000FF00) >> 8
b = (pack & 0x000000FF)
buffer.append(struct.pack('ffffBBBBIII', data[0], data[1], data[2], 1.0, b, g, r, 0, 0, 0, 0))
ros_msg.data = b''.join(buffer)
return ros_msg
def getimage2(ros_data):
global image2
image2 = np.frombuffer(ros_data.data, np.uint8)
image2 = image2.reshape(ros_data.height, ros_data.width, 3)
def getimage3(ros_data):
global image3
image3 = np.frombuffer(ros_data.data, np.uint8)
image3 = image3.reshape(ros_data.height, ros_data.width, 3)
def getcalib(input_ros_msg):
global calib
calib.P = input_ros_msg.P
calib.R = input_ros_msg.R
calib.velo = np.array([7.533745e-03, -9.999714e-01, -6.166020e-04, -4.069766e-03,
1.480249e-02, 7.280733e-04, -9.998902e-01, -7.631618e-02,
9.998621e-01, 7.523790e-03, 1.480755e-02, -2.717806e-01])
if __name__ == "__main__":
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
rospy.init_node('plv1', anonymous=True)
image2 = rospy.Subscriber('/kitti/camera_color_left/image_raw', Image, getimage2)
image3 = rospy.Subscriber('/kitti/camera_color_right/image_raw', Image, getimage3)
calib = rospy.Subscriber('/kitti/camera_color_left/camera_info', CameraInfo, getcalib)
pub = rospy.Publisher("/pseudo_lidar", PointCloud2, queue_size = 10)
rate = rospy.Rate(10) # 10hz
################################################
## COEX MAIN INIT
cfg = load_configs(
'./configs/stereo/{}'.format(config))
ckpt = '{}/{}/version_{}/checkpoints/last.ckpt'.format(
'logs/stereo', cfg['model']['name'], version)
cfg['stereo_ckpt'] = ckpt
pose_ssstereo = Stereo.load_from_checkpoint(cfg['stereo_ckpt'],
strict=False,
cfg=cfg).cuda()
fps_list = np.array([])
pose_ssstereo.eval()
################################################
while not rospy.is_shutdown():
start = time.time()
# stereo image(.png) >> depth(.npy) >> pointcloud array(.bin)
pointcloudxyzrgb = png_to_bin(image2, image3, calib)
# High resolution pointcloud >> Low resolution pointcloud
cloud = sparsify(pointcloudxyzrgb)
# pointcloudXYZRGB >> msgs/pointcloud2
cloud = bin_to_pcl(cloud)
# output
cloud_new = pcl_to_ros(cloud)
pub.publish(cloud_new)
print('ok! %.5f' % (time.time() - start))