-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing.py
120 lines (92 loc) · 3.45 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from functools import partial
import numpy as np
from utils.params import params as p
from py_graph_construction import get_graph, get_graph_nd
# Graph structure
p.define("nodes_nb", 128)
p.define("feat_nb", 4)
p.define("edge_feat_nb", 5)
p.define("neigh_size", 0.15)
p.define("neigh_nb", 5)
p.define("gridsize", 64)
p.define("feats_3d", True)
p.define("edge_feats", False)
p.define("mesh", False)
# p.define("scale", False)
p.define("min_angle_z_normal", 0)
# Data transformation
p.define("to_remove", 0.)
p.define("to_keep", 5000)
p.define("occl_pct", 0.)
p.define("noise_std", 0.)
p.define("rotation_deg", 0)
p.define("debug", False)
p.define("viz", False)
p.define("viz_small_spheres", False)
def preprocess_dummy(data):
return data
def preprocess_adj_to_bias(adj):
"""
Prepare adjacency matrix by converting it to bias vectors.
Expected shape: [nodes, nodes]
Originally from github.com/PetarV-/GAT
"""
# mt = adj + np.eye(adj.shape[1])
return -1e9 * (1.0 - adj)
# def graph_preprocess_shot(fn, p):
# feats, adj = get_graph_feats(fn, **p.__dict__)
# bias = adj_to_bias(adj)
# # 2-hop adj matrix
# # adj_2hop = np.matmul(adj, adj)
# # adj_2hop = (adj_2hop > 0).astype(adj_2hop.dtype)
# # bias_2hop = adj_to_bias(adj_2hop)
# return feats, bias
def preprocess_fpfh(feats):
max_feats = np.max(feats, axis=1) + 1e-6
feats = feats / np.repeat(max_feats.reshape((p.nodes_nb, 1)), 33, axis=1)
return feats
def preprocess_esf3d(feats):
return np.array(feats)[..., np.newaxis]
def preprocess_lesf(feats):
return np.array(feats)[..., 0]
def graph_preprocess_3d(fn, p, preprocess_feats, preprocess_adj,
preprocess_edge_feats):
feats, adj, edge_feats, valid_indices = get_graph_nd(fn, **p.__dict__)
feats = preprocess_feats(feats)
adj = preprocess_adj(adj)
edge_feats = preprocess_edge_feats(edge_feats)
return feats, adj, edge_feats, valid_indices
def graph_preprocess(fn, p, preprocess_feats, preprocess_adj,
preprocess_edge_feats):
try:
feats, adj, edge_feats, valid_indices = get_graph(fn, **p.__dict__)
except:
print fn
return
feats = preprocess_feats(feats)
adj = preprocess_adj(adj)
edge_feats = preprocess_edge_feats(edge_feats)
return feats, adj, edge_feats, valid_indices
def get_graph_preprocessing_fn(p):
if p.feats_3d:
if p.feat_nb == 4:
return partial(graph_preprocess_3d, p=p,
preprocess_feats=preprocess_esf3d,
preprocess_adj=preprocess_adj_to_bias,
preprocess_edge_feats=preprocess_dummy)
else:
return partial(graph_preprocess_3d, p=p,
preprocess_feats=preprocess_lesf,
preprocess_adj=preprocess_adj_to_bias,
preprocess_edge_feats=preprocess_dummy)
else:
if p.feat_nb == 33:
return partial(graph_preprocess, p=p,
preprocess_feats=preprocess_fpfh,
preprocess_adj=preprocess_adj_to_bias,
preprocess_edge_feats=preprocess_dummy)
else:
return partial(graph_preprocess, p=p,
preprocess_feats=preprocess_dummy,
preprocess_adj=preprocess_adj_to_bias,
preprocess_edge_feats=preprocess_dummy)