-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdqn.py
377 lines (270 loc) · 12 KB
/
dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: jiankaiwang
@Note:
install `pip install gym`
install `pip install atari-py` first.
"""
import tensorflow as tf
import gym
import tensorflow.contrib.slim as slim
import cv2
import numpy as np
import random
import tqdm
import copy
# In[]
def epsilon_greedy_action_annealed(action_distribution, training_percentage,
epsilon_start=1.0, epsilon_end=1e-2):
"""Explore and Exploit."""
annealed_epsilon = epsilon_start * (1-training_percentage) + epsilon_end * training_percentage
if random.random() < annealed_epsilon:
# take random action
return np.argmax(np.random.random(action_distribution.shape))
else:
# take the recommended action
return np.argmax(action_distribution)
# In[]
class DQNAgent(object):
def __init__(self, session, num_actions,
learning_rate=1e-3, history_length=4,
screen_height=84, screen_width=84, gamma=0.98):
self.session = session
self.num_actions = num_actions
self.learning_rate = learning_rate
self.history_length = history_length
self.screen_height = screen_height
self.screen_width = screen_width
self.gamma = gamma
self.build_prediction_network()
self.build_target_network()
self.build_training()
def build_prediction_network(self):
with tf.variable_scope("pred_network"):
self.s_t = tf.placeholder('float32',
shape=[None, self.history_length,
self.screen_height, self.screen_width],
name="state")
self.conv_0 = slim.conv2d(self.s_t, 32, 8, 4, scope='conv_0')
self.conv_1 = slim.conv2d(self.conv_0, 64, 4, 2, scope='conv_1')
self.conv_2 = slim.conv2d(self.conv_1, 64, 3, 1, scope='conv_2')
shape = self.conv_2.get_shape().as_list()
self.flattened = tf.reshape(self.conv_2, [-1, shape[1]*shape[2]*shape[3]])
self.fc_0 = slim.fully_connected(self.flattened, 512, scope='fc_0')
self.q_t = slim.fully_connected(self.fc_0, self.num_actions,
activation_fn=None, scope='q_values')
#self.q_action = tf.argmax(self.q_t, dimension=1)
def build_target_network(self):
with tf.variable_scope("target_network"):
self.target_s_t = tf.placeholder('float32',
shape=[None, self.history_length,
self.screen_height, self.screen_width],
name="state")
self.target_conv_0 = slim.conv2d(self.target_s_t, 32, 8, 4, scope='conv_0')
self.target_conv_1 = slim.conv2d(self.target_conv_0, 64, 4, 2, scope='conv_1')
self.target_conv_2 = slim.conv2d(self.target_conv_1, 64, 3, 1, scope='conv_2')
shape = self.target_conv_2.get_shape().as_list()
self.target_flattened = tf.reshape(self.target_conv_2, [-1, shape[1]*shape[2]*shape[3]])
self.target_fc_0 = slim.fully_connected(self.target_flattened, 512, scope="fc_0")
self.target_q = slim.fully_connected(self.target_fc_0, self.num_actions,
activation_fn=None, scope='q_values')
#self.target_q_action = tf.argmax(self.target_q, dimension=1)
def update_target_q_weights(self):
"""
update target q weights which is based on predicted q weights
"""
pred_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='pred_network')
target_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_network')
for target_var, pred_var in zip(target_vars, pred_vars):
weight_input = tf.placeholder('float32', name='weight')
target_var.assign(weight_input).eval({weight_input: pred_var.eval()})
def sample_and_train_pred(self, replay_table, batch_size):
s_t, action, reward, s_t_plus_1, terminal = replay_table.sample_batch(batch_size)
q_t_plus_1 = self.target_q.eval({self.target_s_t: s_t_plus_1})
terminal = np.array(terminal) + 0.
max_q_t_plus_1 = np.max(q_t_plus_1, axis=1)
target_q_t = (1. - terminal) * self.gamma * max_q_t_plus_1 + reward
_, q_t, loss = self.session.run([self.train_step, self.q_t, self.loss],
{self.target_q_t: target_q_t,
self.action: action, self.s_t: s_t})
return q_t
def build_training(self):
self.target_q_t = tf.placeholder('float32', [None], name='target_q_t')
self.action = tf.placeholder('int64', [None], name='action')
action_one_hot = tf.one_hot(self.action, self.num_actions, 1.0, 0.0, name='action_one_hot')
q_of_action = tf.reduce_sum(self.q_t * action_one_hot, reduction_indices=1, name='q_of_action')
self.delta = tf.square((self.target_q_t - q_of_action))
self.loss = tf.reduce_mean(self.clip_error(self.delta), name='loss')
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
self.train_step = self.optimizer.minimize(self.loss)
def sample_action_from_distribution(self, action_distribution,
epsilon_percentage):
action = epsilon_greedy_action_annealed(action_distribution, epsilon_percentage)
return action
def predict_action(self, state, epsilon_percentage):
action_distribution, = self.session.run([self.q_t], feed_dict={self.s_t: [state]})
action = self.sample_action_from_distribution(action_distribution, epsilon_percentage)
return action
def process_state_into_stacked_frames(self, frame,
past_frames, past_state=None):
# the shape is [..., screen width, screen height]
full_state = np.zeros((self.history_length, self.screen_width, self.screen_height))
if past_state is not None:
for i in range(len(past_state)-1):
full_state[i,:,:] = past_state[i+1,:,:]
full_state[-1,:,:] = self.preprocess_frame(frame, (self.screen_width, self.screen_height))
else:
all_frames = past_frames + [frame]
for i, frame_f in enumerate(all_frames):
full_state[i,:,:] = self.preprocess_frame(frame_f, (self.screen_width, self.screen_height))
return full_state
def to_grayscale(self, x):
return np.dot(x[...,:3], [0.299, 0.587, 0.114])
def clip_error(self, x):
try:
return tf.select(tf.abs(x) < 1.0, 0.5 * tf.square(x), tf.abs(x) - 0.5)
except:
return tf.where(tf.abs(x) < 1.0, 0.5 * tf.square(x), tf.abs(x) - 0.5)
def preprocess_frame(self, im, shape):
cropped = im[16:201, :]
grayscaled = self.to_grayscale(cropped)
#resized = imresize(grayscaled, shape, 'nearest').astype('float32')
resized = cv2.resize(grayscaled, shape)
mean, std = 40.45, 64.15
frame = (resized-mean) / std
return frame
# In[]
class EpisodeHistory(object):
def __init__(self):
self.states = []
self.actions = []
self.rewards = []
self.state_primes = []
self.terminals = []
def add_to_history(self, state, action, reward, state_prime, terminal):
self.states.append(state)
self.actions.append(action)
self.rewards.append(reward)
self.state_primes.append(state_prime)
self.terminals.append(terminal)
# In[]
class ExperienceReplayTable(object):
def __init__(self, table_size=5000):
self.states = []
self.actions = []
self.rewards = []
self.state_primes = []
self.terminals = []
self.table_size = table_size
def add_episode(self, episode):
self.states += episode.states
self.actions += episode.actions
self.rewards += episode.rewards
self.state_primes += episode.state_primes
self.terminals += episode.terminals
self.purge_old_experiences()
def purge_old_experiences(self):
while len(self.states) > self.table_size:
self.states.pop(0)
self.actions.pop(0)
self.rewards.pop(0)
self.state_primes.pop(0)
self.terminals.pop(0)
def sample_batch(self, batch_size):
s_t, action, reward, s_t_plus_1, terminal = [], [], [], [], []
rands = np.arange(len(self.states))
np.random.shuffle(rands)
rands = rands[:batch_size]
for r_i in rands:
s_t.append(self.states[r_i])
action.append(self.actions[r_i])
reward.append(self.rewards[r_i])
s_t_plus_1.append(self.state_primes[r_i])
terminal.append(self.terminals[r_i])
return np.array(s_t), np.array(action), np.array(reward), \
np.array(s_t_plus_1), np.array(terminal)
# In[]
def main(argv):
# configuration
scale = 10
total_episodes = 500 * scale
learn_start = total_episodes // 2
epsilon_stop = 200 * scale
train_frequency = 4
target_frequency = 1000
batch_size = 32
max_episode_length = 100000
render_start = 10 # start to render the frame
should_render = True
env = gym.make('Breakout-v4')
num_actions = env.action_space.n
solved = False
with tf.Session() as sess:
agent = DQNAgent(session=sess, num_actions=num_actions, learning_rate=1e-3,
history_length=4, gamma=0.98)
sess.run(tf.global_variables_initializer())
episode_rewards = []
q_t_list = []
replay_table = ExperienceReplayTable()
global_step_counter = 0
for i in tqdm.tqdm(range(total_episodes)):
frame = env.reset()
past_frames = [copy.deepcopy(frame) for _ in range(agent.history_length-1)]
state = agent.process_state_into_stacked_frames(frame, past_frames, past_state=None)
episode_reward = 0.0
episode_history = EpisodeHistory()
epsilon_percentage = float(min(i / float(epsilon_stop),1.0))
for j in range(max_episode_length):
action = agent.predict_action(state, epsilon_percentage)
if global_step_counter < learn_start:
action = np.argmax(np.random.random(agent.num_actions))
reward = 0
frame_prime, reward, terminal, _ = env.step(action)
if terminal:
reward -= 1
state_prime = agent.process_state_into_stacked_frames(frame_prime, past_frames, past_state=state)
past_frames.append(frame_prime)
past_frames = past_frames[len(past_frames)-agent.history_length:]
if (i > render_start) and should_render and solved:
env.render()
episode_history.add_to_history(state, action, reward, state_prime, terminal)
state = state_prime
episode_reward += reward
global_step_counter += 1
if global_step_counter > learn_start and global_step_counter % train_frequency == 0:
q_t = agent.sample_and_train_pred(replay_table, batch_size)
q_t_list.append(q_t)
if global_step_counter % target_frequency == 0:
agent.update_target_q_weights()
if j == (max_episode_length - 1):
terminal = True
if terminal:
replay_table.add_episode(episode_history)
episode_rewards.append(episode_reward)
break
if i % 50 == 0:
ave_reward = np.mean(episode_rewards[-100:])
print("Reward stats (min, max, median, mean): ",
np.min(episode_rewards[-100:]),
np.max(episode_rewards[-100:]),
np.median(episode_rewards[-100:]),
ave_reward)
print("Global stats (ep_percentage, global_step_counter)",
str(epsilon_percentage),
global_step_counter)
if q_t_list:
print("QT stats (min, max, median, mean)",
np.min(q_t_list[-1000:]),
np.max(q_t_list[-1000:]),
np.median(q_t_list[-1000:]),
np.mean(q_t_list[-1000:]))
if ave_reward > 100.0:
solved = True
print("Solved.")
else:
solved = False
print(ave_reward)
# In[]
if __name__ == "__main__":
main('')