-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPSASIM.m
327 lines (245 loc) · 12.2 KB
/
PSASIM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
%% Point Source Approximation For Simulating Extracellular Recording
% Written by Jesse Hurtado
% Simulation of two neurons firing in proximity to an electrode array.
% This simulation includes two functions, PSA1 and PSA2, point source approximation 1 and 2.
% PSA1 will simulate an EXRTACELLULAR POTENTIAL RECORDING using a POINT
% SOURCE APPROXIMATION based on the Hodgkin-Huxley model, which assumes the current source acts as a point and
% the potential at a distance r away from the source can be approximated
% using a simple linear equation based on Koch, Buzaki, and Gold Point Source Approximation.
% This PSA assumes the extracellular medium
% is homogeneous in conductivity. PSA takes three arguments, 1 = current
% amplitude (in pA) stimulating the distant neuron, 2 = distance from the
% recording electrode in microns, and 3 = noise that will cause variable
% spiking.
% PSA2 will simulate EXTRACELLULAR POTENTIAL RECORDING using a POINT SOURCE
% APPROXIMATION (PSA) based on the Connors Stevens model.
% Increasing the distance r (microns) from the electrode will, as proposed,
% decrease the recorded extracellular potential, and the amplitude of the
% overall trace changes as a a function of r. This can be demonstrated by
% varying the parameter r.
% Using PSA, we can simulate extracellular
% recording, and sum their voltage traces to produce a simulated recording that models what a utah array recording electrode might detect.
% This simulation works best with a slight difference in applied currents
% as the frequency of spikes will be slighly out of phase and more individual spikes
% will appear in the summed trace.
% Finally, noise can be added to the trace to simulate LFP. Adding noise
% this way does not affect excitability of either neurons.
% Each time the simulation is run, a unique trace will be produced.
% PSA can be adapted to other dynamic models
%%
% SIMULATE UTAH RECORDING OF TWO HH NEURONS
% Time Vector
dt=0.00002; % time step (s)
tmax=1.1; % max time value 1 second (s)
tvect= 0:dt:tmax; % time vector, a second
% LFP Noise Vector
hi = 16;
LFP_vec = randn(1, length(tvect));
LFP_vec = LFP_vec*hi;
T1 = PSA1(5,7,0.0002); % Simulate the PSA of a neuron with applied current of 5 nA, 7 microns away from recording electrode, with added noise to vary spiking.
T2 = PSA1(5,13,0.0002); % Simulate the PSA of a neuron with applied current of 5 nA, 13 microns away from recording electode, with added noise.
T3 = T1+T2; % Sum the voltage trace outputs
T3 = T3*100 + LFP_vec; % Add LFP noise, final trace
% This is done to remove artifacts present at the time of the start of the
% pulse
start_time = 0.1; % Start time to remove (in seconds)
start_index = find(tvect >= start_time, 1); % Find the index corresponding to the start time
T3 = T3(start_index:end);
tvect = tvect(start_index:end); % Remove the time values before the start index
spikeTimes = detectSpikes(T3,tvect,200); % Detect spikes
%Plot
figure;
plot(tvect,T3);
hold on
plot(spikeTimes, 200*ones(size(spikeTimes)), 'r.', 'MarkerSize', 15);
title('Simulation of Utah Array with Two HH neurons')
xlabel('Time (ms)');
ylabel('Recorded Potential (uV)');
hold off
%%
% SIMULATE UTAH RECORDING OF TWO CONNORS STEVENS NEURONS
clear
% Time Vector
dt=0.00002; % time step (s)
tmax=1.1; % max time value 1 second (s)
tvect= 0:dt:tmax; % time vector, a second
% LFP Noise Vector
hi = 16; % noise scalar
LFP_vec = randn(1, length(tvect)); % empty LFP vector
LFP_vec = LFP_vec*hi; % scaled LFP vector
V1 = PSA2(5,7,0.0002); % run PSA2 (Connors Stevens) simulation for a neuron 7 microns away with a 5 nA applied current with noise.
V2 = PSA2(5,13,0.0002); % run PSA2 (Connors Stevens) simulation for a neuron 15 microns away with a 5 nA applied current with noise.
V3 = V1+V2; % Sum the voltage trace outputs
V3 = V3*100 + LFP_vec; % Add LFP noise, final trace
start_time = 0.1; % Start time to remove (in seconds)
start_index = find(tvect >= start_time, 1); % Find the index corresponding to the start time
V3 = V3(start_index:end);
tvect = tvect(start_index:end); % Remove the time values before the start index
spikeTimes = detectSpikes(V3,tvect,200); % Detect spikes
%Plot
figure;
plot(tvect,V3);
hold on
plot(spikeTimes, 200*ones(size(spikeTimes)), 'r.', 'MarkerSize', 15);title('Simulation of Utah Array with Two Connors Stevens Neurons')
xlabel('Time (ms)');
ylabel('Recorded Potential (uV)');
%%
function [j] = PSA1(I,r,noise)
% Point Source Approximation based on HODGKIN-HUXLEY
% inputs are I in nA and r (distance from recroding electode) in microns,
% HH Parameters
Gmax_Na=12e-6; % maximum sodium conductance (S)
Gmax_K=3.6e-6; % maximum delayed rectifier conductance (S)
G_L=30e-9; % leak conductance (S)
E_Na=45e-3; % sodium reversal potential (V)
E_K=-82e-3; % potassium reversal potential (V)
E_L=-60e-3; % leak reversal potential (V)
Cm=100e-12; % membrance capaictance (F)
% Point Source Approximation Values
sigma = 0.43; % Siemens / m^2 medium conductivity
R = r * 10^-7; % in meters (one micron = 1e-6 meters)
q = noise; % noise scalar
dt=0.00002; % time step (s)
tmax=1.1; % max time value (s)
tvect=0:dt:tmax; % time vector (s)
Vm=zeros(size(tvect)); % membrane potential Vm vector
Vm(1)=-0.065; % set initial condition (V)
m=zeros(size(tvect)); % gating variable m vector
m(1)=0.05; % set initial condition
h=zeros(size(tvect)); % gating variable h vector
h(1)=0.5; % set initial condition
n=zeros(size(tvect)); % gating variable n vector
n(1)=0.35; % set initial condition
dVmdt = zeros(size(tvect)); % store value of dVdt for PSA
Im = zeros(size(tvect)); % empty vector for transmembrane current
theta = zeros(size(tvect)); % point source approximation for EXTRACELLULAR POTENTIAL
step_time=0.9; % step duration (s)
start_time=0; % start time of the step (s)
step_Iapp= I * 10^-10; % applied current value (A)
Iapp_vect=zeros(size(tvect));% applied current vector (A)
step_indices = tvect >= start_time & tvect < (start_time + step_time); % find indices corresponding to step duration
Iapp_vect(step_indices)=step_Iapp; % set step current for the specified duration
for i=2:length(tvect) % integrate over time
dVmdt(i-1)=(1/Cm) * (G_L*(E_L-Vm(i-1)) + Gmax_Na*((m(i-1))^3)*h(i-1)*(E_Na-Vm(i-1)) + Gmax_K*((n(i-1))^4)*(E_K-Vm(i-1)) + Iapp_vect(i-1)); % define Vm rate of change
Vm(i)=Vm(i-1)+dVmdt(i-1)*dt +randn()*noise; % update Vm
dmdt=(((10^5)*(-Vm(i-1)-0.045))/(exp(100*(-Vm(i-1)-0.045))-1))*(1-m(i-1)) - (4*(10^3)*exp((-Vm(i-1)-0.070)/0.018))*m(i-1); % define m rate of change
m(i)=m(i-1)+dmdt*dt; % update m
dhdt=(70*exp(50*(-Vm(i-1)-0.070)))*(1-h(i-1)) - ((10^3)/(1+exp(100*(-Vm(i-1)-0.040))))*h(i-1); % define h rate of change
h(i)=h(i-1)+dhdt*dt; % update h
dndt=(((10^4)*(-Vm(i-1)-0.060))/(exp(100*(-Vm(i-1)-0.060))-1))*(1-n(i-1)) - (125*exp((-Vm(i-1)-0.070)/0.08))*n(i-1); % define n rate of change
n(i)=n(i-1)+dndt*dt; % update n
Im(i-1) = dVmdt(i-1)*Cm; % calculate Im
theta(i-1) = Im(i-1)/(4*pi*sigma*R); %calculate PSA potential
end
% Plot
figure;
subplot(3,1,2);
plot(tvect*10^3,Im*10^10);
title('Plot of Transmembrane Current as a Function of Time')
xlabel('Time (ms)');
ylabel('Transmembrane Current (nA)');
subplot(3,1,1);
plot(tvect*10^3,Iapp_vect*10^10);
title('Plot of Applied Current as a Function of Time')
xlabel('Time (ms)');
ylabel('Applied Current (nA)');
subplot(3,1,3);
plot(tvect*10^3,theta*10^3);
title('Plot of PSA Potential as a Function of Time')
xlabel('Time (ms)')
ylabel('PSA Potential (mV)')
j = theta*10^3;
end
function [V] = PSA2(I,r,noise)
% Point Source Approximation based on Connors Stevens Model
% inputs are I in nA and r (distance from recroding electode) in microns,
% and noise
% Connors Stevens Parameters
Gmax_Na=12e-6; % maximum sodium conductance (S)
Gmax_K=3.6e-6; % maximum delayed rectifier conductance (S)
G_L=30e-9; % leak conductance (S)
E_Na=45e-3; % sodium reversal potential (V)
E_K=-82e-3; % potassium reversal potential (V)
E_L=-60e-3; % leak reversal potential (V)
Cm=100e-12; % membrance capaictance (F)
Gmax_A=25e-9; % A-current conductance (S)
E_A=-70e-3; % A-current reversal potential (V)
% Initialize Vectors
dt=0.00002; % time step (s)
tmax=1.1; % max time value (s)
tvect=0:dt:tmax; % time vector (s)
Vm=zeros(size(tvect)); % membrane potential Vm vector
Vm(1)=-0.065; % set initial condition (V)
m=zeros(size(tvect)); % gating variable m vector
m(1)=0.05; % set initial condition
h=zeros(size(tvect)); % gating variable h vector
h(1)=0.5; % set initial condition
n=zeros(size(tvect)); % gating variable n vector
n(1)=0.35; % set initial condition
a=zeros(size(tvect)); % gating variable a vector
a(1)=0.05; % set initial condition
b=zeros(size(tvect)); % gating variable b vector
b(1)=0.05; % set initial condition
%PSA Values
sigma = 0.43; % Siemens / m^2 medium conductivity
R = r * 10^-7; % in meters (one micron = 1e-6 meters)
w = noise; % noise scalar
step_time=0.9; % step duration (s)
start_time=0; % start time of the step (s)
step_Iapp= I * 10^-10; % applied current value (A)
Iapp_vect=zeros(size(tvect));% applied current vector (A)
step_indices = find(tvect >= start_time & tvect < (start_time + step_time)); % find indices corresponding to step duration
Iapp_vect(step_indices)=step_Iapp; % set step current for the specified duration
dVmdt = zeros(size(tvect)); % store value of dVdt for PSA
Im = zeros(size(tvect)); % empty vector for transmembrane current
theta = zeros(size(tvect)); % point source approximation for EXTRACELLULAR POTENTIAL
for i=2:length(tvect) % integrate over time
dVmdt(i-1)=(1/Cm) * (G_L*(E_L-Vm(i-1)) + Gmax_Na*((m(i-1))^3)*h(i-1)*(E_Na-Vm(i-1)) + Gmax_K*((n(i-1))^4)*(E_K-Vm(i-1)) + Gmax_A*((a(i-1))^3)*b(i-1)*(E_A-Vm(i-1)) + Iapp_vect(i-1)); % define Vm rate of change
Vm(i)=Vm(i-1)+dVmdt(i-1)*dt + randn()*w; % update Vm
dmdt=(((10^5)*(-Vm(i-1)-0.045))/(exp(100*(-Vm(i-1)-0.045))-1))*(1-m(i-1)) - (4*(10^3)*exp((-Vm(i-1)-0.070)/0.018))*m(i-1); % define m rate of change
m(i)=m(i-1)+dmdt*dt; % update m
dhdt=(70*exp(50*(-Vm(i-1)-0.070)))*(1-h(i-1)) - ((10^3)/(1+exp(100*(-Vm(i-1)-0.040))))*h(i-1); % define h rate of change
h(i)=h(i-1)+dhdt*dt; % update h
dndt=(((10^4)*(-Vm(i-1)-0.060))/(exp(100*(-Vm(i-1)-0.060))-1))*(1-n(i-1)) - (125*exp((-Vm(i-1)-0.070)/0.08))*n(i-1); % define n rate of change
n(i)=n(i-1)+dndt*dt; % update n
dadt=((0.3)-a(i-1))/0.0005; % define h rate of change
a(i)=a(i-1)+dadt*dt; % update a
dbdt=((0.2)-b(i-1))/0.0005; % define n rate of change
b(i)=b(i-1)+dbdt*dt; % update b
Im(i-1) = dVmdt(i-1) * Cm; % calculate Im
theta(i-1) = Im(i-1)/(4*pi*sigma*R); %calculate PSA potential
end
% Plot
figure;
subplot(3,1,2);
plot(tvect*10^3,Im*10^10);
title('Plot of Transmembrane Current as a Function of Time')
xlabel('Time (ms)');
ylabel('Transmembrane Current (nA)');
subplot(3,1,1);
plot(tvect*10^3,Iapp_vect*10^10);
title('Plot of Applied Current as a Function of Time')
xlabel('Time (ms)');
ylabel('Applied Current (nA)');
subplot(3,1,3);
plot(tvect*10^3,theta*10^3);
title('Plot of PSA Potential as a Function of Time')
xlabel('Time (ms)')
ylabel('PSA Potential (mV)')
V = theta*10^3;
end
function [spikeTimes] = detectSpikes(V,tvect,t)
% spike detection
spikeThreshold = t; % Threshold for detecting spikes
isSpiking = false; % Initialize spike detection flag
spikeTimes = []; % Initialize spike times array
spikeAmplitudes = []; % Initialize spike amplitudes array
for i = 1:length(V)
if V(i) > spikeThreshold && ~isSpiking
isSpiking = true;
spikeTimes = [spikeTimes, tvect(i)]; % Store spike time
elseif V(i) < -30e-3 && isSpiking
isSpiking = false;
end
end
end