-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathreading-list.html
631 lines (521 loc) · 26.3 KB
/
reading-list.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>reading-list</title>
<style type="text/css">
body {
font-family: Helvetica, arial, sans-serif;
font-size: 14px;
line-height: 1.6;
padding-top: 10px;
padding-bottom: 10px;
background-color: white;
padding: 30px; }
body > *:first-child {
margin-top: 0 !important; }
body > *:last-child {
margin-bottom: 0 !important; }
a {
color: #4183C4; }
a.absent {
color: #cc0000; }
a.anchor {
display: block;
padding-left: 30px;
margin-left: -30px;
cursor: pointer;
position: absolute;
top: 0;
left: 0;
bottom: 0; }
h1, h2, h3, h4, h5, h6 {
margin: 20px 0 10px;
padding: 0;
font-weight: bold;
-webkit-font-smoothing: antialiased;
cursor: text;
position: relative; }
h1:hover a.anchor, h2:hover a.anchor, h3:hover a.anchor, h4:hover a.anchor, h5:hover a.anchor, h6:hover a.anchor {
background: url() no-repeat 10px center;
text-decoration: none; }
h1 tt, h1 code {
font-size: inherit; }
h2 tt, h2 code {
font-size: inherit; }
h3 tt, h3 code {
font-size: inherit; }
h4 tt, h4 code {
font-size: inherit; }
h5 tt, h5 code {
font-size: inherit; }
h6 tt, h6 code {
font-size: inherit; }
h1 {
font-size: 28px;
color: black; }
h2 {
font-size: 24px;
border-bottom: 1px solid #cccccc;
color: black; }
h3 {
font-size: 18px; }
h4 {
font-size: 16px; }
h5 {
font-size: 14px; }
h6 {
color: #777777;
font-size: 14px; }
p, blockquote, ul, ol, dl, li, table, pre {
margin: 15px 0; }
hr {
background: transparent url() repeat-x 0 0;
border: 0 none;
color: #cccccc;
height: 4px;
padding: 0;
}
body > h2:first-child {
margin-top: 0;
padding-top: 0; }
body > h1:first-child {
margin-top: 0;
padding-top: 0; }
body > h1:first-child + h2 {
margin-top: 0;
padding-top: 0; }
body > h3:first-child, body > h4:first-child, body > h5:first-child, body > h6:first-child {
margin-top: 0;
padding-top: 0; }
a:first-child h1, a:first-child h2, a:first-child h3, a:first-child h4, a:first-child h5, a:first-child h6 {
margin-top: 0;
padding-top: 0; }
h1 p, h2 p, h3 p, h4 p, h5 p, h6 p {
margin-top: 0; }
li p.first {
display: inline-block; }
li {
margin: 0; }
ul, ol {
padding-left: 30px; }
ul :first-child, ol :first-child {
margin-top: 0; }
dl {
padding: 0; }
dl dt {
font-size: 14px;
font-weight: bold;
font-style: italic;
padding: 0;
margin: 15px 0 5px; }
dl dt:first-child {
padding: 0; }
dl dt > :first-child {
margin-top: 0; }
dl dt > :last-child {
margin-bottom: 0; }
dl dd {
margin: 0 0 15px;
padding: 0 15px; }
dl dd > :first-child {
margin-top: 0; }
dl dd > :last-child {
margin-bottom: 0; }
blockquote {
border-left: 4px solid #dddddd;
padding: 0 15px;
color: #777777; }
blockquote > :first-child {
margin-top: 0; }
blockquote > :last-child {
margin-bottom: 0; }
table {
padding: 0;border-collapse: collapse; }
table tr {
border-top: 1px solid #cccccc;
background-color: white;
margin: 0;
padding: 0; }
table tr:nth-child(2n) {
background-color: #f8f8f8; }
table tr th {
font-weight: bold;
border: 1px solid #cccccc;
margin: 0;
padding: 6px 13px; }
table tr td {
border: 1px solid #cccccc;
margin: 0;
padding: 6px 13px; }
table tr th :first-child, table tr td :first-child {
margin-top: 0; }
table tr th :last-child, table tr td :last-child {
margin-bottom: 0; }
img {
max-width: 100%; }
span.frame {
display: block;
overflow: hidden; }
span.frame > span {
border: 1px solid #dddddd;
display: block;
float: left;
overflow: hidden;
margin: 13px 0 0;
padding: 7px;
width: auto; }
span.frame span img {
display: block;
float: left; }
span.frame span span {
clear: both;
color: #333333;
display: block;
padding: 5px 0 0; }
span.align-center {
display: block;
overflow: hidden;
clear: both; }
span.align-center > span {
display: block;
overflow: hidden;
margin: 13px auto 0;
text-align: center; }
span.align-center span img {
margin: 0 auto;
text-align: center; }
span.align-right {
display: block;
overflow: hidden;
clear: both; }
span.align-right > span {
display: block;
overflow: hidden;
margin: 13px 0 0;
text-align: right; }
span.align-right span img {
margin: 0;
text-align: right; }
span.float-left {
display: block;
margin-right: 13px;
overflow: hidden;
float: left; }
span.float-left span {
margin: 13px 0 0; }
span.float-right {
display: block;
margin-left: 13px;
overflow: hidden;
float: right; }
span.float-right > span {
display: block;
overflow: hidden;
margin: 13px auto 0;
text-align: right; }
code, tt {
margin: 0 2px;
padding: 0 5px;
white-space: nowrap;
border: 1px solid #eaeaea;
background-color: #f8f8f8;
border-radius: 3px; }
pre code {
margin: 0;
padding: 0;
white-space: pre;
border: none;
background: transparent; }
.highlight pre {
background-color: #f8f8f8;
border: 1px solid #cccccc;
font-size: 13px;
line-height: 19px;
overflow: auto;
padding: 6px 10px;
border-radius: 3px; }
pre {
background-color: #f8f8f8;
border: 1px solid #cccccc;
font-size: 13px;
line-height: 19px;
overflow: auto;
padding: 6px 10px;
border-radius: 3px; }
pre code, pre tt {
background-color: transparent;
border: none; }
sup {
font-size: 0.83em;
vertical-align: super;
line-height: 0;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb
}
* {
-webkit-print-color-adjust: exact;
}
@media screen and (min-width: 914px) {
body {
width: 854px;
margin:0 auto;
}
}
@media print {
table, pre {
page-break-inside: avoid;
}
pre {
word-wrap: break-word;
}
}
</style>
<style type="text/css">
/**
* prism.js default theme for JavaScript, CSS and HTML
* Based on dabblet (http://dabblet.com)
* @author Lea Verou
*/
code[class*="language-"],
pre[class*="language-"] {
color: black;
background: none;
text-shadow: 0 1px white;
font-family: Consolas, Monaco, 'Andale Mono', 'Ubuntu Mono', monospace;
text-align: left;
white-space: pre;
word-spacing: normal;
word-break: normal;
word-wrap: normal;
line-height: 1.5;
-moz-tab-size: 4;
-o-tab-size: 4;
tab-size: 4;
-webkit-hyphens: none;
-moz-hyphens: none;
-ms-hyphens: none;
hyphens: none;
}
pre[class*="language-"]::-moz-selection, pre[class*="language-"] ::-moz-selection,
code[class*="language-"]::-moz-selection, code[class*="language-"] ::-moz-selection {
text-shadow: none;
background: #b3d4fc;
}
pre[class*="language-"]::selection, pre[class*="language-"] ::selection,
code[class*="language-"]::selection, code[class*="language-"] ::selection {
text-shadow: none;
background: #b3d4fc;
}
@media print {
code[class*="language-"],
pre[class*="language-"] {
text-shadow: none;
}
}
/* Code blocks */
pre[class*="language-"] {
padding: 1em;
margin: .5em 0;
overflow: auto;
}
:not(pre) > code[class*="language-"],
pre[class*="language-"] {
background: #f5f2f0;
}
/* Inline code */
:not(pre) > code[class*="language-"] {
padding: .1em;
border-radius: .3em;
white-space: normal;
}
.token.comment,
.token.prolog,
.token.doctype,
.token.cdata {
color: slategray;
}
.token.punctuation {
color: #999;
}
.namespace {
opacity: .7;
}
.token.property,
.token.tag,
.token.boolean,
.token.number,
.token.constant,
.token.symbol,
.token.deleted {
color: #905;
}
.token.selector,
.token.attr-name,
.token.string,
.token.char,
.token.builtin,
.token.inserted {
color: #690;
}
.token.operator,
.token.entity,
.token.url,
.language-css .token.string,
.style .token.string {
color: #a67f59;
background: hsla(0, 0%, 100%, .5);
}
.token.atrule,
.token.attr-value,
.token.keyword {
color: #07a;
}
.token.function {
color: #DD4A68;
}
.token.regex,
.token.important,
.token.variable {
color: #e90;
}
.token.important,
.token.bold {
font-weight: bold;
}
.token.italic {
font-style: italic;
}
.token.entity {
cursor: help;
}
</style>
</head>
<body>
<h1 id="toc_0">Further reading</h1>
<h3 id="toc_1">Quick links</h3>
<ul>
<li><a href="http://mc-stan.org">Stan website</a></li>
<li><a href="http://discourse.mc-stan.org">The Stan Forums</a> (get help from Stan developers and other users)</li>
<li><a href="http://mc-stan.org/users/documentation/index.html">Stan documentation</a> (links to various kinds of documentation for Stan)</li>
<li>Contributed talks and materials from the 2017 Stan conference (mostly about interesting applications of Stan), including slides & code (<a href="https://github.com/stan-dev/stancon_talks/blob/master/README.md">link to repository</a>)</li>
<li><a href="http://andrewgelman.com">Andrew Gelman's blog</a></li>
</ul>
<h3 id="toc_2">R packages from the Stan development team</h3>
<ul>
<li><a href="http://mc-stan.org/rstanarm">rstan</a> (R interface to Stan)</li>
<li><a href="http://mc-stan.org/rstanarm">rstanarm</a> (provides a traditional R formula interface for fitting common applied regression models with Stan, without having to write the Stan code yourself)</li>
<li><a href="http://mc-stan.org/bayesplot">bayesplot</a> (plotting)</li>
<li><a href="http://mc-stan.org/shinystan">shinystan</a> (interactive tables and visualizations)</li>
<li><a href="http://mc-stan.org/loo">loo</a> (efficient approximate leave-one-out cross-validation for Bayesian models)</li>
</ul>
<h3 id="toc_3">Hamiltonian Monte Carlo (HMC) and related background</h3>
<p>I highly recommend my Stan colleague Michael Betancourt's intro to HMC paper. Michael has a lot of very technical papers about HMC but this one is primarily focused on providing intuition (e.g., he has a whole section on the connection between HMC and the physics of planetary motion that I showed in a slide):</p>
<ul>
<li>A Conceptual Introduction to Hamiltonian Monte Carlo (<a href="https://arxiv.org/abs/1701.02434">paper</a>)</li>
</ul>
<p>This one is aimed at ecologists, but the HMC explanation is well written so it's a good read even if not an ecologist:</p>
<ul>
<li>Faster Estimation of Bayesian Models in Ecology using Hamiltonian Monte Carlo (<a href="http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12681/full">paper</a>)</li>
</ul>
<p>This case study from my colleague Bob Carpenter uses simple simulations to demonstrate how things get strange (and challenging) very quickly as the number of dimensions grows:</p>
<ul>
<li>Typical Sets and the Curse of Dimensionality (<a href="http://mc-stan.org/users/documentation/case-studies/curse-dims.html">case study</a>)</li>
</ul>
<h3 id="toc_4">Diagnostics, reparameterizations, priors</h3>
<ul>
<li>Diagnosing Biased Inference with Divergences (<a href="http://mc-stan.org/users/documentation/case-studies/divergences_and_bias.html">case study</a>)</li>
<li>How the Shape of a Weakly Informative Prior Affects Inferences (<a href="http://mc-stan.org/users/documentation/case-studies/weakly_informative_shapes.html">case study</a>)</li>
<li>The Impact of Reparameterization on Point Estimates (<a href="http://mc-stan.org/users/documentation/case-studies/mle-params.html">case study</a>)</li>
<li>The prior can generally only be understood in the context of the likelihood (<a href="https://arxiv.org/abs/1708.07487">paper</a>)</li>
<li>The QR Decomposition for Regression Models (<a href="http://mc-stan.org/users/documentation/case-studies/qr_regression.html">case study</a>)</li>
</ul>
<h3 id="toc_5">Visualization and graphical model checking</h3>
<ul>
<li>Visualization in Bayesian Workflow (<a href="https://arxiv.org/pdf/1709.01449.pdf">paper</a>)</li>
<li><strong>bayesplot</strong> package tutorials (<a href="http://mc-stan.org/bayesplot/articles/index.html">online vignettes</a>)</li>
</ul>
<h3 id="toc_6">Time series & spatial models</h3>
<ul>
<li><p>Chapter 10 in the <a href="https://github.com/stan-dev/stan/releases/download/v2.16.0/stan-reference-2.16.0.pdf">Stan Manual v2.16.0</a></p></li>
<li><p>Spatial Models in Stan: Intrinsic Auto-Regressive Models for Areal Data (<a href="http://mc-stan.org/users/documentation/case-studies/icar_stan.html">case study</a>)</p></li>
<li><p>Stan tutorial: <a href="http://tharte.github.io/mbt/">Modern Bayesian Tools for Time Series Analysis</a> contributed by Stan users Thomas P. Harte and R. Michael Weylandt.</p></li>
<li><p>You can also find tons of examples of simple and complicated time series modeling in Stan just by Googling </p></li>
</ul>
<h3 id="toc_7">Measurement error & missing data</h3>
<ul>
<li>Missing data: chapter 11 in the <a href="https://github.com/stan-dev/stan/releases/download/v2.16.0/stan-reference-2.16.0.pdf">Stan Manual v2.16.0</a></li>
<li>Measurement error: chapter 14 in the <a href="https://github.com/stan-dev/stan/releases/download/v2.16.0/stan-reference-2.16.0.pdf">Stan Manual v2.16.0</a></li>
</ul>
<h3 id="toc_8">Survival (duration) analysis</h3>
<p>Some Stan users have written Python and R libraries to help fit certain survival models using Stan: </p>
<ul>
<li><a href="https://github.com/hammerlab/survivalstan">Library of Stan Models for Survival Analysis</a> from Jacki Novik and HammerLab</li>
<li><p><a href="https://github.com/giabaio/survHE">survHE R package for fitting survival models via RStan</a> from Gianluca Baio</p></li>
<li><p>Chapters 11 through 15 in the <a href="https://github.com/stan-dev/stan/releases/download/v2.16.0/stan-reference-2.16.0.pdf">Stan Manual v2.16.0</a> all have content that relates in some way to survival models. </p></li>
<li><p>Paper and Stan code for survival analysis with shrinkage priors from Aki Vehtari (<a href="https://groups.google.com/forum/#!topic/stan-users/IOzu8_tkCSk">link</a>). (Note: this is a few years old so the Stan code may use some deprecated syntax) </p></li>
</ul>
<h3 id="toc_9">Model comparison, predictive performance, variable selection</h3>
<p>Note: some of these papers have been published in various journals but I'm including links to the free arXiv preprint versions.</p>
<ul>
<li>Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC (<a href="https://arxiv.org/abs/1507.04544">arXiv</a>, <a href="https://github.com/stan-dev/loo">R package</a>)</li>
<li>Understanding predictive information criteria for Bayesian models (<a href="https://arxiv.org/abs/1307.5928">arXiv</a>)</li>
<li>Projection predictive variable selection using Stan+R (<a href="http://arxiv.org/abs/1508.02502">arXiv</a>, <a href="https://github.com/stan-dev/projpred">R package</a>)</li>
<li>Using stacking to average Bayesian predictive distributions (<a href="https://arxiv.org/abs/1704.02030">arXiv</a>)</li>
<li>Comparison of Bayesian predictive methods for model selection (<a href="https://arxiv.org/pdf/1503.08650.pdf">arXiv</a>)</li>
</ul>
<h3 id="toc_10">Item response theory</h3>
<p>Note: the Stan programs in these case studies were written using some old syntax that is now deprecated but still works (e.g., assignment with "<-"
instead of "=").</p>
<ul>
<li>Two-Parameter Logistic Item Response Model (<a href="http://mc-stan.org/users/documentation/case-studies/tutorial_twopl.html">case study</a>)</li>
<li>Rasch and Two-Parameter Logistic Item Response Models with Latent Regression (<a href="http://mc-stan.org/users/documentation/case-studies/rasch_and_2pl.html">case study</a>)</li>
<li>Partial Credit and Generalized Partial Credit Models with Latent Regression (<a href="http://mc-stan.org/users/documentation/case-studies/pcm_and_gpcm.html">case study</a>)</li>
<li>Rating Scale and Generalized Rating Scale Models with Latent Regression (<a href="http://mc-stan.org/users/documentation/case-studies/rsm_and_grsm.html">case study</a>)</li>
<li><p>Hierarchical Two-Parameter Logistic Item Response Model (<a href="http://mc-stan.org/users/documentation/case-studies/hierarchical_2pl.html">case study</a>)</p></li>
<li><p>Chapter 9, section 11 in the <a href="https://github.com/stan-dev/stan/releases/download/v2.16.0/stan-reference-2.16.0.pdf">Stan Manual v2.16.0</a></p></li>
<li><p>Fitting Bayesian item response models in Stata and Stan (<a href="https://arxiv.org/abs/1601.03443v2">arXiv</a>)</p></li>
</ul>
<h3 id="toc_11">Mixture models</h3>
<ul>
<li>Identifying Bayesian Mixture Models (<a href="http://mc-stan.org/users/documentation/case-studies/identifying_mixture_models.html">case study</a>)</li>
<li>Chapter 13 in the <a href="https://github.com/stan-dev/stan/releases/download/v2.16.0/stan-reference-2.16.0.pdf">Stan Manual v2.16.0</a></li>
</ul>
<h3 id="toc_12">Gaussian processes</h3>
<p>We didn't talk about Gaussian processes but I get asked about them a lot so here are some links just in case anyone is interested:</p>
<ul>
<li><p>Chapter 18 in the <a href="https://github.com/stan-dev/stan/releases/download/v2.16.0/stan-reference-2.16.0.pdf">Stan Manual v2.16.0</a></p></li>
<li><p>Hierarchical Gaussian Processes in Stan (<a href="https://github.com/stan-dev/stancon_talks/blob/master/README.md">Rob Trangucci's talk from StanCon 2017</a>)</p></li>
<li><p>Modeling the Rate of Public Mass Shootings with Gaussian Processes (<a href="https://github.com/stan-dev/stancon_talks/blob/master/README.md">Nathan Sanders' talk from StanCon 2017</a>)</p></li>
<li><p>GP example code recently updated by Rob Trangucci (<a href="https://github.com/stan-dev/example-models/tree/master/misc/gaussian-process">example models repository</a>)</p></li>
</ul>
<h3 id="toc_13">Economics-related textbooks</h3>
<p>This book is pretty good but it was written before Stan (everything in the book can be done in Stan though):</p>
<ul>
<li><a href="http://a.co/eDIIpUZ">An Introduction to Modern Bayesian Econometrics</a> by Tony Lancaster </li>
</ul>
<p>A forthcoming textbook that should be excellent but won't be published until 2018: </p>
<ul>
<li><a href="http://a.co/7J796MY">Bayesian Econometrics with Stan</a> by Jim Savage et al.</li>
</ul>
<p>The author of that forthcoming book, Jim Savage, has a blog that sometimes has good economics-related Stan content: </p>
<ul>
<li><a href="https://modernstatisticalworkflow.blogspot.com">Jim Savage blog</a></li>
</ul>
<script type="text/javascript">
var _self="undefined"!=typeof window?window:"undefined"!=typeof WorkerGlobalScope&&self instanceof WorkerGlobalScope?self:{},Prism=function(){var e=/\blang(?:uage)?-(\w+)\b/i,t=0,n=_self.Prism={util:{encode:function(e){return e instanceof a?new a(e.type,n.util.encode(e.content),e.alias):"Array"===n.util.type(e)?e.map(n.util.encode):e.replace(/&/g,"&").replace(/</g,"<").replace(/\u00a0/g," ")},type:function(e){return Object.prototype.toString.call(e).match(/\[object (\w+)\]/)[1]},objId:function(e){return e.__id||Object.defineProperty(e,"__id",{value:++t}),e.__id},clone:function(e){var t=n.util.type(e);switch(t){case"Object":var a={};for(var r in e)e.hasOwnProperty(r)&&(a[r]=n.util.clone(e[r]));return a;case"Array":return e.map&&e.map(function(e){return n.util.clone(e)})}return e}},languages:{extend:function(e,t){var a=n.util.clone(n.languages[e]);for(var r in t)a[r]=t[r];return a},insertBefore:function(e,t,a,r){r=r||n.languages;var l=r[e];if(2==arguments.length){a=arguments[1];for(var i in a)a.hasOwnProperty(i)&&(l[i]=a[i]);return l}var o={};for(var s in l)if(l.hasOwnProperty(s)){if(s==t)for(var i in a)a.hasOwnProperty(i)&&(o[i]=a[i]);o[s]=l[s]}return n.languages.DFS(n.languages,function(t,n){n===r[e]&&t!=e&&(this[t]=o)}),r[e]=o},DFS:function(e,t,a,r){r=r||{};for(var l in e)e.hasOwnProperty(l)&&(t.call(e,l,e[l],a||l),"Object"!==n.util.type(e[l])||r[n.util.objId(e[l])]?"Array"!==n.util.type(e[l])||r[n.util.objId(e[l])]||(r[n.util.objId(e[l])]=!0,n.languages.DFS(e[l],t,l,r)):(r[n.util.objId(e[l])]=!0,n.languages.DFS(e[l],t,null,r)))}},plugins:{},highlightAll:function(e,t){var a={callback:t,selector:'code[class*="language-"], [class*="language-"] code, code[class*="lang-"], [class*="lang-"] code'};n.hooks.run("before-highlightall",a);for(var r,l=a.elements||document.querySelectorAll(a.selector),i=0;r=l[i++];)n.highlightElement(r,e===!0,a.callback)},highlightElement:function(t,a,r){for(var l,i,o=t;o&&!e.test(o.className);)o=o.parentNode;o&&(l=(o.className.match(e)||[,""])[1],i=n.languages[l]),t.className=t.className.replace(e,"").replace(/\s+/g," ")+" language-"+l,o=t.parentNode,/pre/i.test(o.nodeName)&&(o.className=o.className.replace(e,"").replace(/\s+/g," ")+" language-"+l);var s=t.textContent,u={element:t,language:l,grammar:i,code:s};if(!s||!i)return n.hooks.run("complete",u),void 0;if(n.hooks.run("before-highlight",u),a&&_self.Worker){var c=new Worker(n.filename);c.onmessage=function(e){u.highlightedCode=e.data,n.hooks.run("before-insert",u),u.element.innerHTML=u.highlightedCode,r&&r.call(u.element),n.hooks.run("after-highlight",u),n.hooks.run("complete",u)},c.postMessage(JSON.stringify({language:u.language,code:u.code,immediateClose:!0}))}else u.highlightedCode=n.highlight(u.code,u.grammar,u.language),n.hooks.run("before-insert",u),u.element.innerHTML=u.highlightedCode,r&&r.call(t),n.hooks.run("after-highlight",u),n.hooks.run("complete",u)},highlight:function(e,t,r){var l=n.tokenize(e,t);return a.stringify(n.util.encode(l),r)},tokenize:function(e,t){var a=n.Token,r=[e],l=t.rest;if(l){for(var i in l)t[i]=l[i];delete t.rest}e:for(var i in t)if(t.hasOwnProperty(i)&&t[i]){var o=t[i];o="Array"===n.util.type(o)?o:[o];for(var s=0;s<o.length;++s){var u=o[s],c=u.inside,g=!!u.lookbehind,h=!!u.greedy,f=0,d=u.alias;u=u.pattern||u;for(var p=0;p<r.length;p++){var m=r[p];if(r.length>e.length)break e;if(!(m instanceof a)){u.lastIndex=0;var y=u.exec(m),v=1;if(!y&&h&&p!=r.length-1){var b=r[p+1].matchedStr||r[p+1],k=m+b;if(p<r.length-2&&(k+=r[p+2].matchedStr||r[p+2]),u.lastIndex=0,y=u.exec(k),!y)continue;var w=y.index+(g?y[1].length:0);if(w>=m.length)continue;var _=y.index+y[0].length,P=m.length+b.length;if(v=3,P>=_){if(r[p+1].greedy)continue;v=2,k=k.slice(0,P)}m=k}if(y){g&&(f=y[1].length);var w=y.index+f,y=y[0].slice(f),_=w+y.length,S=m.slice(0,w),O=m.slice(_),j=[p,v];S&&j.push(S);var A=new a(i,c?n.tokenize(y,c):y,d,y,h);j.push(A),O&&j.push(O),Array.prototype.splice.apply(r,j)}}}}}return r},hooks:{all:{},add:function(e,t){var a=n.hooks.all;a[e]=a[e]||[],a[e].push(t)},run:function(e,t){var a=n.hooks.all[e];if(a&&a.length)for(var r,l=0;r=a[l++];)r(t)}}},a=n.Token=function(e,t,n,a,r){this.type=e,this.content=t,this.alias=n,this.matchedStr=a||null,this.greedy=!!r};if(a.stringify=function(e,t,r){if("string"==typeof e)return e;if("Array"===n.util.type(e))return e.map(function(n){return a.stringify(n,t,e)}).join("");var l={type:e.type,content:a.stringify(e.content,t,r),tag:"span",classes:["token",e.type],attributes:{},language:t,parent:r};if("comment"==l.type&&(l.attributes.spellcheck="true"),e.alias){var i="Array"===n.util.type(e.alias)?e.alias:[e.alias];Array.prototype.push.apply(l.classes,i)}n.hooks.run("wrap",l);var o="";for(var s in l.attributes)o+=(o?" ":"")+s+'="'+(l.attributes[s]||"")+'"';return"<"+l.tag+' class="'+l.classes.join(" ")+'" '+o+">"+l.content+"</"+l.tag+">"},!_self.document)return _self.addEventListener?(_self.addEventListener("message",function(e){var t=JSON.parse(e.data),a=t.language,r=t.code,l=t.immediateClose;_self.postMessage(n.highlight(r,n.languages[a],a)),l&&_self.close()},!1),_self.Prism):_self.Prism;var r=document.currentScript||[].slice.call(document.getElementsByTagName("script")).pop();return r&&(n.filename=r.src,document.addEventListener&&!r.hasAttribute("data-manual")&&document.addEventListener("DOMContentLoaded",n.highlightAll)),_self.Prism}();"undefined"!=typeof module&&module.exports&&(module.exports=Prism),"undefined"!=typeof global&&(global.Prism=Prism);
</script>
</body>
</html>