Here are the key parameters grouped by their purpose:
--exp_name
: Experiment name for logging purposes--seed
: Random seed for reproducibility (default: 42)--device
: GPU device(s) to use (default: [0])--num_workers
: Number of data loading workers (default: 1)
--dataroot
: Root directory for datasets (default: "/data/owcl_data")--datasets
: Comma-separated list of datasets to use (default: "CIFAR100,SUN397,EuroSAT,OxfordIIITPet,Flowers102,FGVCAircraft,StanfordCars,Food101")--held_out_dataset
: Dataset to use for held-out evaluation (default: "ImageNet,UCF101,DTD")--input_size
: Input image size (default: 224)
--network_arc
: Network architecture to use (default: "clip")--backbone
: Backbone network (e.g., 'ViT-B/32' for CLIP, 'vitb14' for DINO)
--incremental
: Incremental learning scenario (default: "dataset", choices: ["dataset", "class", "task"]), dataset represents task incremental learning--num_classes
: Number of classes per stage for class-incremental learning (default: 100)--randomize
: Randomize class order (default: True)
--optimizer
: Optimizer to use (default: "adamw")--batch_size
: Batch size for training (default: 2048)--lr
: Learning rate (default: 6e-4)--momentum
: Momentum for optimizer (default: 0.9)--weight_decay
: Weight decay for optimizer (default: 0.05)--n_epochs
: Number of training epochs (default: 20)--criteria
: Loss criteria to use (default: "osce", choices: ["cs", "osce", "osce_other"])--X_format
: Input data format (default: "feature", choices: ["image", "feature", "embedding", "code"])
--learning_strategy
: Learning strategy (default: "online", choices: ["online", "offline", "wake_sleep", "none"])--wake_bs
: Batch size for wake training (default: 32)--wake_evaluation_iter_ratio
: Ratio of iterations for wake evaluation (default: 0.25)--sampler_type
: Type of sampler to use (default: "class_balanced", choices: ["weighted", "none", "fifo", "class_balanced", "uniform"])
--need_compress
: Enable feature compression (default: False)--CLS_weight
: Use CLS token weight for compression (default: False)--per_instance
: Perform per-instance compression (default: True)--int_quantize
: Enable integer quantization for compression (default: False)--components
: Number of components for compression (default: 5)--int_range
: Integer range for quantization (default: 255)
--results_dir
: Directory to save results (default: "./results")--log_interval
: Interval for logging during training (default: 10)--save_interval
: Interval for saving model checkpoints (default: 5)--eval_interval
: Interval for evaluation during training (default: 5)--eval_scenario
: Evaluation scenario (default: "cumulative_cumulative")
--include_the_other_class
: Include "other" class in classification (action: store_true)--use_other_classifier
: Use a separate classifier for the "other" class (action: store_true)--use_tuned_text_embedding
: Use tuned text embedding (action: store_true)--accumulating_data_to_the_final_stage
: Accumulate data to the final stage (action: store_true)--ema_exemplar_per_class_acc
: Use EMA for exemplar per-class accuracy (action: store_true)--ema_exemplar_per_class_acc_decay
: Decay rate for EMA exemplar per-class accuracy (default: 0.9)--fix_finetuned_model
: Fix the fine-tuned model (action: store_true)
For a complete list of options and their descriptions, please refer to the options/
directory in the source code and the modify_commandline_options
method in each module.