-
Notifications
You must be signed in to change notification settings - Fork 98
/
Copy pathgdrop.py
38 lines (34 loc) · 1.47 KB
/
gdrop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implements gdrop from the PGGAN paper."""
import numpy as np
import tensorflow as tf
def gdrop(layer, mode='prop', strength=0.4, axes=(0,3), normalize=False, input_mode='NHWC'):
"""Implements gdrop from the PGGAN paper."""
if input_mode == 'NHWC':
assert axes==(0,3)
elif input_mode == 'NCHW':
assert axes==(0,1)
else:
raise NotImplementedError('Invalid input_mode', input_mode)
in_axes = len(layer.shape)
rnd_shape = tf.TensorShape([layer.shape[i] if i in axes else 1 for i in range(in_axes)])
one = tf.constant(1, dtype=layer.dtype)
if mode == 'prop':
coef = strength * tf.constant(np.sqrt(np.float32(int(layer.shape[-1]))), dtype=layer.dtype)
rnd = tf.random_normal(rnd_shape, dtype=layer.dtype, name='gdrop') * coef + one
return layer * rnd
else:
raise ValueError('Invalid GDropLayer mode', mode)