-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_preprocessing_seq_to_one.R
173 lines (134 loc) · 7.32 KB
/
data_preprocessing_seq_to_one.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# download the IMDB dataset
if (!file.exists("data/aclImdb_v1.tar.gz")) {
download.file("http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz",
"data/aclImdb_v1.tar.gz")
untar("data/aclImdb_v1.tar.gz", exdir = "data/")
}
# install required packages
list.of.packages <- c("readr", "dplyr", "stringr", "stringi")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[, "Package"])]
if (length(new.packages)) install.packages(new.packages)
require("readr")
require("dplyr")
require("stringr")
require("stringi")
negative_train_list <- list.files("data/aclImdb/train/neg/", full.names = T)
positive_train_list <- list.files("data/aclImdb/train/pos/", full.names = T)
negative_test_list <- list.files("data/aclImdb/test/neg/", full.names = T)
positive_test_list <- list.files("data/aclImdb/test/pos/", full.names = T)
file_import <- function(file_list) {
import <- sapply(file_list, read_file)
return(import)
}
negative_train_raw <- file_import(negative_train_list)
positive_train_raw <- file_import(positive_train_list)
negative_test_raw <- file_import(negative_test_list)
positive_test_raw <- file_import(positive_test_list)
train_raw <- c(negative_train_raw, positive_train_raw)
test_raw <- c(negative_test_raw, positive_test_raw)
# Pre-process a corpus composed of a vector of sequences Build a dictionnary
# removing too rare words
text_pre_process <- function(corpus, count_threshold = 10, dic = NULL) {
raw_vec <- corpus
raw_vec <- stri_enc_toascii(str = raw_vec)
### perform some preprocessing
raw_vec <- str_replace_all(string = raw_vec, pattern = "[^[:print:]]", replacement = "")
raw_vec <- str_to_lower(string = raw_vec)
raw_vec <- str_replace_all(string = raw_vec, pattern = "_", replacement = " ")
raw_vec <- str_replace_all(string = raw_vec, pattern = "\\bbr\\b", replacement = "")
raw_vec <- str_replace_all(string = raw_vec, pattern = "\\s+", replacement = " ")
raw_vec <- str_trim(string = raw_vec)
### Split raw sequence vectors into lists of word vectors (one list element per
### sequence)
word_vec_list <- stri_split_boundaries(raw_vec, type = "word", skip_word_none = T,
skip_word_number = F, simplify = F)
### Build vocabulary
if (is.null(dic)) {
word_vec_unlist <- unlist(word_vec_list)
word_vec_table <- sort(table(word_vec_unlist), decreasing = T)
word_cutoff <- which.max(word_vec_table < count_threshold)
word_keep <- names(word_vec_table)[1:(word_cutoff - 1)]
stopwords <- c(letters, "an", "the", "br")
word_keep <- setdiff(word_keep, stopwords)
} else word_keep <- names(dic)[!dic == 0]
### Clean the sentences to keep only the curated list of words
word_vec_list <- lapply(word_vec_list, function(x) x[x %in% word_keep])
# sentence_vec<- stri_split_boundaries(raw_vec, type='sentence', simplify = T)
word_vec_length <- lapply(word_vec_list, length) %>% unlist()
### Build dictionnary
dic <- 1:length(word_keep)
names(dic) <- word_keep
dic <- c(`¤` = 0, dic)
### reverse dictionnary
rev_dic <- names(dic)
names(rev_dic) <- dic
return(list(word_vec_list = word_vec_list, dic = dic, rev_dic = rev_dic))
}
################################################################
make_bucket_data <- function(word_vec_list, labels, dic, seq_len = c(225), right_pad = T) {
### Trunc sequence to max bucket length
word_vec_list <- lapply(word_vec_list, head, n = max(seq_len))
word_vec_length <- lapply(word_vec_list, length) %>% unlist()
bucketID <- cut(word_vec_length, breaks = c(0, seq_len, Inf), include.lowest = T,
labels = F)
### Right or Left side Padding Pad sequences to their bucket length with
### dictionnary 0-label
word_vec_list_pad <- lapply(1:length(word_vec_list), function(x) {
length(word_vec_list[[x]]) <- seq_len[bucketID[x]]
word_vec_list[[x]][is.na(word_vec_list[[x]])] <- names(dic[1])
if (right_pad == F)
word_vec_list[[x]] <- rev(word_vec_list[[x]])
return(word_vec_list[[x]])
})
### Assign sequences to buckets and unroll them in order to be reshaped into arrays
unrolled_arrays <- lapply(1:length(seq_len), function(x) unlist(word_vec_list_pad[bucketID ==
x]))
### Assign labels to their buckets
bucketed_labels <- lapply(1:length(seq_len), function(x) labels[bucketID == x])
names(bucketed_labels) <- as.character(seq_len)
### Assign the dictionnary to each bucket terms
unrolled_arrays_dic <- lapply(1:length(seq_len), function(x) dic[unrolled_arrays[[x]]])
# Reshape into arrays having each sequence into a row
features <- lapply(1:length(seq_len), function(x) {
array(unrolled_arrays_dic[[x]],
dim = c(seq_len[x], length(unrolled_arrays_dic[[x]])/seq_len[x]))
})
names(features) <- as.character(seq_len)
### Combine data and labels into buckets
buckets <- lapply(1:length(seq_len), function(x) c(list(data = features[[x]]),
list(label = bucketed_labels[[x]])))
names(buckets) <- as.character(seq_len)
### reverse dictionnary
rev_dic <- names(dic)
names(rev_dic) <- dic
return(list(buckets = buckets, dic = dic, rev_dic = rev_dic))
}
corpus_preprocessed_train <- text_pre_process(corpus = train_raw, count_threshold = 10,
dic = NULL)
corpus_preprocessed_test <- text_pre_process(corpus = test_raw, dic = corpus_preprocessed_train$dic)
seq_length_dist <- unlist(lapply(corpus_preprocessed_train$word_vec_list, length))
quantile(seq_length_dist, 0:20/20)
corpus_bucketed_train <- make_bucket_data(word_vec_list = corpus_preprocessed_train$word_vec_list,
labels = rep(0:1, each = 12500),
dic = corpus_preprocessed_train$dic,
seq_len = c(100, 150, 250, 400, 600),
right_pad = T)
corpus_bucketed_test <- make_bucket_data(word_vec_list = corpus_preprocessed_test$word_vec_list,
labels = rep(0:1, each = 12500),
dic = corpus_preprocessed_test$dic,
seq_len = c(100, 150, 250, 400, 600),
right_pad = T)
saveRDS(corpus_bucketed_train, file = "data/corpus_bucketed_train.rds")
saveRDS(corpus_bucketed_test, file = "data/corpus_bucketed_test.rds")
corpus_single_train <- make_bucket_data(word_vec_list = corpus_preprocessed_train$word_vec_list,
labels = rep(0:1, each = 12500),
dic = corpus_preprocessed_train$dic,
seq_len = c(600),
right_pad = T)
corpus_single_test <- make_bucket_data(word_vec_list = corpus_preprocessed_test$word_vec_list,
labels = rep(0:1, each = 12500),
dic = corpus_preprocessed_test$dic,
seq_len = c(600),
right_pad = T)
saveRDS(corpus_single_train, file = "data/corpus_single_train.rds")
saveRDS(corpus_single_test, file = "data/corpus_single_test.rds")