-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain-code.py
339 lines (253 loc) · 12.2 KB
/
main-code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# import necessary libraries
from pathlib import Path
from PIL import Image
import os, shutil
from os import listdir
# image resizing
from PIL import Image
import numpy as np
# load and display an image with Matplotlib
from matplotlib import image
from matplotlib import pyplot
# Mac OS created a hidden file called .DS_Store which interfered with my data processing. I had to delete this hidden file.
for root, dirs, files in os.walk('/Users/jinchoi725/Desktop/fashionimages'):
i = 0
for file in files:
if file.endswith('.DS_Store'):
path = os.path.join(root, file)
print("Deleting: %s" % (path))
if os.remove(path):
print("Unable to delete!")
else:
print("Deleted...")
i += 1
print("Files Deleted: %d" % (i))
# import in a list format the fashion image RGB files
Input_dir = '/Users/jinchoi725/Desktop/fashionimages/'
Out_dir = '/Users/jinchoi725/Desktop/gr_fashionimages/'
a = os.listdir('/Users/jinchoi725/Desktop/fashionimages/')
# convert all the RGB files into grayscale files. In cases of errors, skip them.
for i in a:
try:
print(i)
I = Image.open('/Users/jinchoi725/Desktop/fashionimages/'+i)
L = I.convert('L')
L.save('/Users/jinchoi725/Desktop/gr_fashionimages/'+i)
except:
pass
# Mac OS created a hidden file called .DS_Store which interfered with my data processing. I had to delete this hidden file, AGAIN.
for root, dirs, files in os.walk('/Users/jinchoi725/Desktop/gr_fashionimages'):
i = 0
for file in files:
if file.endswith('.DS_Store'):
path = os.path.join(root, file)
print("Deleting: %s" % (path))
if os.remove(path):
print("Unable to delete!")
else:
print("Deleted...")
i += 1
print("Files Deleted: %d" % (i))
# The grayscaled images have to be resized to the same dimension for K-Means clustering.
dim = (80, 60) # This is the dimension that I chose.
X_image_train = []
for fname in listdir(Out_dir):
fpath = os.path.join(Out_dir, fname)
im = Image.open(fpath)
im_resized = im.resize(dim) # This is where the image files are resized
X_image_train.append(im_resized) # The resized image files are appended to a list object X_image_train.
# Using the numpy library, I converted each image file to a 2 dimentional numpy array.
X_image_array=[]
for x in range(len(X_image_train)):
X_image=np.array(X_image_train[x],dtype='uint8')
X_image_array.append(X_image) # The numpy arrays are appended to a list object X_image_array.
# Checking the size of a single numpy array
X_image_array[0].shape
X_image_array[15].shape
# Using np.stack, I stacked the numpy arrays along a new axis.
# While X_image_array was simply a squence of 2D numpy arrays, the stacked one is one 3D numpy array with three axes.
X_final = np.stack(X_image_array)
X_final
# As a result the shape of X_final is now (44441, 60, 80) with one more value which indicates the added axis (Z).
X_final.shape #(44441, 60, 80)
# A 2D numpy array in the 3D stacked numply array can still be displayed as a visual image.
pyplot.imshow(X_final[0])
pyplot.show()
# Now we are ready to perform K-Means clustering. Renamed X_final to X_train
X_train = X_final
# But before performing K-Means clustering, the images are too large in their dimensions and need to be shrinked in the dimensions
# Import necessary libraries for K-Means clustering
import keras
from keras.datasets import fashion_mnist
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
# Reshapeing X to a 2D array for PCA and then k-means
X = X_train.reshape(-1,X_train.shape[1]*X_train.shape[2]) #We will only be using X for clustering
X.shape
#Visualise an image
n= 2
plt.imshow(X[n].reshape(X_train.shape[1], X_train.shape[2]), cmap = plt.cm.binary)
plt.show()
# To perform PCA we must first change the mean to 0 and variance to 1 for X. I used StandardScalar
Clus_dataSet = StandardScaler().fit_transform(X) #(mean = 0 and variance = 1)
# Make an instance of the model
variance = 0.98 #The higher the explained variance the more accurate the model will remain
pca = PCA(variance)
# Fit the fashion image data according to our PCA instance
pca.fit(Clus_dataSet)
# Check the result of PCA
print("Number of components before PCA = " + str(X.shape[1]))
print("Number of components after PCA 0.98 = " + str(pca.n_components_)) # Components reduced from 4800 to 773
# Transform our data according to our PCA instance
Clus_dataSet = pca.transform(Clus_dataSet)
print("Dimension of our data after PCA = " + str(Clus_dataSet.shape)) # Dimension of our data after PCA = (44441, 773)
# To visualise the data inversed from PCA
approximation = pca.inverse_transform(Clus_dataSet)
print("Dimension of our data after inverse transforming the PCA = " + str(approximation.shape))
# Dimension of our data after inverse transforming the PCA = (44441, 4800)
# Image reconstruction using the less dimensioned data
plt.figure(figsize=(8,4));
n = 6177 #index value, change to view different data. In this case,, #6177 is an image of wrist watch.
# The original image with 4800 components
plt.subplot(1, 2, 1);
plt.imshow(X[n].reshape(X_train.shape[1], X_train.shape[2]),
cmap = plt.cm.gray,);
plt.xlabel(str(X.shape[1])+' components', fontsize = 14)
plt.title('Original Image', fontsize = 20);
# Check an image with shrinked 773 principal components
plt.subplot(1, 2, 2);
plt.imshow(approximation[n].reshape(X_train.shape[1], X_train.shape[2]),
cmap = plt.cm.gray,);
plt.xlabel(str(Clus_dataSet.shape[1]) +' components', fontsize = 14)
plt.title(str(variance * 100) + '% of Variance Retained', fontsize = 20);
# Install tqdm to visualize processing time left for K-Means clustering.
# This is not necessary, but I just like to visualize everything.
!pip install tqdm
import time
from tqdm import tqdm
# The number of initial clusters is very important in performing K-Means clustering.
# In cases where one knows the exact number of categories of given images to cluster, that number can be used.
# However, in reality, most datasets are not labeled as it is very expensive to do so.
# Therefore, I am going to assume that I do not know the number of categories of my fashion images.
# I calculated Within Cluster Sum of Squares (WCSS) and used the elbow method to deduce the best combination of the number of clusters and WCSS.
# K-Means Clustering의 경우 클러스터 갯수 설정이 매우 중요함
# 카테고리 수를 알고 있는 경우는 클러스터 갯수 설정을 동일하게 해주면 되지만, 이번 분석에서는 모른다고 가정하고 진행
# Within Cluster Sum of Squares (WCSS)를 계산하여, 클러스터 갯수와 WCSS의 여러 조합중에서 최적의 클러스터 갯수를 도출
wcss=[]
for i in tqdm(range(1,20)):
kmeans = KMeans(n_clusters=i, init ='k-means++', max_iter=300, n_init=30,random_state=0 )
kmeans.fit(Clus_dataSet)
wcss.append(kmeans.inertia_)
# A graph visualization of the elbow method.
plt.plot(range(1,20),wcss)
plt.title('The Elbow Method Graph')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.locator_params(axis="x", nbins=20)
plt.show()
# Because the initial states of centroids (the center point of each cluster) are randomly set, the ultimate result of each K-Means depends heavily
# on the initial state. Therefore, initial states are set several times to minimize variances due to the randomness.
# As derived from the above elbow method, I am going to use set 3 as the number of clusters for my data.
# and repeatedly calculate inertia for those three clusters to deduce the best number of times for repeated initialization.
# As this takes a long time to process, I am going to limit the number of repetitions to max 30.
inertia = []
for k in tqdm(range(1,30)):
kmeans = KMeans(init = "k-means++",n_clusters=3, max_iter=300, n_init = k, random_state=1).fit(Clus_dataSet)
inertia.append(np.sqrt(kmeans.inertia_))
# This is the graph of the inertia by the number of initializations.
plt.plot(range(1,30), inertia, marker='s');
plt.xlabel('$k$')
plt.ylabel('$J(C_k)$');
plt.locator_params(axis="x", nbins=30)
# Now I, finally, have all the necessary parameters to perform K-Means clustering.
# The number of clusters (centroids) is set to 3 and there will be 4 initializations to account for the randomness of the initial states of the centroids.
k_means = KMeans(init = "k-means++", n_clusters = 3, n_init = 4)
# Fit the data to our k_means model. Run it.
k_means.fit(Clus_dataSet)
# List of labels of each dataset (= each cluster). In this case, there are 3 labels because I set 3 clusters for clustering
k_means_labels = k_means.labels_
print("The list of labels of the clusters are " + str(np.unique(k_means_labels)))
# Labeling the data set by clusters
G = len(np.unique(k_means_labels)) #Number of labels
#2D matrix for an array of indexes of the given label
cluster_index= [[] for i in range(G)]
for i, label in enumerate(k_means_labels,0):
for n in range(G):
if label == n:
cluster_index[n].append(i)
else:
continue
# The shape of the 3 centroids. (3, 773)
k_means_cluster_centers = k_means.cluster_centers_ #numpy array of cluster centers
k_means_cluster_centers.shape #comes from 10 clusters and 420 features
#cluster 1 visualisation
my_members = (k_means_labels == 0) #Enter different Cluster number to view its 3D plot
my_members.shape
fig = plt.figure(figsize=(15, 10))
ax = fig.add_subplot(1,1,1,projection='3d')
#Clus_dataSet.shape
#Clus_dataSet[my_members,300].shape
ax.plot(Clus_dataSet[my_members, 0], Clus_dataSet[my_members,1],Clus_dataSet[my_members,2], 'w', markerfacecolor="blue", marker='.',markersize=10)
#cluster 2 visualisation
my_members = (k_means_labels == 1) #Enter different Cluster number to view its 3D plot
my_members.shape
fig = plt.figure(figsize=(15, 10))
ax = fig.add_subplot(1,1,1,projection='3d')
#Clus_dataSet.shape
#Clus_dataSet[my_members,300].shape
ax.plot(Clus_dataSet[my_members, 0], Clus_dataSet[my_members,1],Clus_dataSet[my_members,2], 'w', markerfacecolor="blue", marker='.',markersize=10)
#cluster 3 visualisation
my_members = (k_means_labels == 2) #Enter different Cluster number to view its 3D plot
my_members.shape
fig = plt.figure(figsize=(15, 10))
ax = fig.add_subplot(1,1,1,projection='3d')
#Clus_dataSet.shape
#Clus_dataSet[my_members,300].shape
ax.plot(Clus_dataSet[my_members, 0], Clus_dataSet[my_members,1],Clus_dataSet[my_members,2], 'w', markerfacecolor="blue", marker='.',markersize=10)
# !pip install chart_studio
# !pip install plotly
# Import necessary libraries to visualize the clusters in a different way
import plotly as py
import plotly.graph_objs as go
import plotly.express as px
#3D Plotly Visualisation of Clusters using go
layout = go.Layout(
title='<b>Cluster Visualisation</b>',
yaxis=dict(
title='<i>Y</i>'
),
xaxis=dict(
title='<i>X</i>'
)
)
colors = ['red','green' ,'blue',]
trace = [ go.Scatter3d() for _ in range(11)]
for i in range(0,3):
my_members = (k_means_labels == i)
index = [h for h, g in enumerate(my_members) if g]
trace[i] = go.Scatter3d(
x=Clus_dataSet[my_members, 0],
y=Clus_dataSet[my_members, 1],
z=Clus_dataSet[my_members, 2],
mode='markers',
marker = dict(size = 2,color = colors[i]),
hovertext=index,
name='Cluster'+str(i),
)
fig = go.Figure(data=[trace[0],trace[1],trace[2]], layout=layout)
py.offline.iplot(fig)
#If you hover over the points in the above plots you get an index value
n = 3264 #Use that value here to visualise the selected data
plt.imshow(X[n].reshape(60, 80), cmap = plt.cm.binary)
plt.show()
#Visualisation of images in a cluster
plt.figure(figsize=(20,20));
clust = 0 #enter label number to visualise
num = 100 #num of data to visualize from the cluster
for i in range(1,num):
plt.subplot(10, 10, i); #(Number of rows, Number of column per row, item number)
plt.imshow(X[cluster_index[clust][i+500]].reshape(X_train.shape[1], X_train.shape[2]), cmap = plt.cm.binary);
plt.show()