-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathp64.purs
64 lines (53 loc) · 1.31 KB
/
p64.purs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
module Main where
import Prelude
import Control.Alternative (guard)
import Data.Array ((..))
import Data.Foldable (length)
import Data.Int (odd)
import Data.Set (fromFoldable, insert, member)
import Effect.Console (log)
-- Track form: a + (sqrt(n) + c) / b - a
type Term = { a :: Int, b :: Int, c :: Int }
-- Helpers
lastPositiveMatch f = recurse 0
where recurse i = if f (i + 1) then recurse (i + 1) else i
floorOfSqrt n = lastPositiveMatch \i -> (i * i) <= n
-- Compute first term
first n = { a: floorOfSqrt n, b: 1, c: 0 } :: Term
-- Compute next term
next n a0 term =
let
c = term.a * term.b - term.c
b = (n - c * c) / term.b
a = ((a0 + c) / b)
in
{ a: a, b: b, c: c } :: Term
-- Compute period
periodInternal n a0 terms previousTerm count =
let
nextTerm = next n a0 previousTerm
in
if nextTerm `member` terms
then count
else (periodInternal n a0 (nextTerm `insert` terms) nextTerm (count + 1))
period :: Int -> Int
period n =
let
t0 = first n
in
periodInternal n t0.a (fromFoldable [t0]) t0 0
-- Helpers
oddPeriod n = odd (period n)
perfectSquare n =
let
root = floorOfSqrt n
in
n == root * root
-- Entry point
solve :: Int -> Int
solve max = length (
do
n <- 1 .. max
guard $ ((not (perfectSquare n) ) && (oddPeriod n))
)
main = log (show (solve 10000))