This repository has been archived by the owner on Feb 13, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathtimer.rs
161 lines (133 loc) · 4.67 KB
/
timer.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
use cast::{u16, u32};
use cortex_m::peripheral::syst::SystClkSource;
use cortex_m::peripheral::SYST;
use hal::timer::{CountDown, Periodic};
use nb;
use stm32f103xx::{TIM2, TIM3, TIM4};
use void::Void;
use rcc::{APB1, Clocks};
use time::Hertz;
/// Interrupt events
pub enum Event {
/// Timer timed out / count down ended
Update,
}
pub struct Timer<TIM> {
tim: TIM,
clocks: Clocks,
}
impl Timer<SYST> {
pub fn syst<T>(mut syst: SYST, timeout: T, clocks: Clocks) -> Self
where
T: Into<Hertz>,
{
syst.set_clock_source(SystClkSource::Core);
let mut timer = Timer { tim: syst, clocks };
timer.start(timeout);
timer
}
/// Starts listening for an `event`
pub fn listen(&mut self, event: Event) {
match event {
Event::Update => self.tim.enable_interrupt(),
}
}
/// Stops listening for an `event`
pub fn unlisten(&mut self, event: Event) {
match event {
Event::Update => self.tim.disable_interrupt(),
}
}
}
impl CountDown for Timer<SYST> {
type Time = Hertz;
fn start<T>(&mut self, timeout: T)
where
T: Into<Hertz>,
{
let rvr = self.clocks.sysclk().0 / timeout.into().0 - 1;
assert!(rvr < (1 << 24));
self.tim.set_reload(rvr);
self.tim.clear_current();
self.tim.enable_counter();
}
fn wait(&mut self) -> nb::Result<(), Void> {
if self.tim.has_wrapped() {
Ok(())
} else {
Err(nb::Error::WouldBlock)
}
}
}
impl Periodic for Timer<SYST> {}
macro_rules! hal {
($($TIMX:ident: ($timX:ident, $timXen:ident, $timXrst:ident),)+) => {
$(
impl Timer<$TIMX> {
pub fn $timX<T>(tim: $TIMX, timeout: T, clocks: Clocks, apb1: &mut APB1) -> Self
where
T: Into<Hertz>,
{
// enable and reset peripheral to a clean slate state
apb1.enr().modify(|_, w| w.$timXen().set_bit());
apb1.rstr().modify(|_, w| w.$timXrst().set_bit());
apb1.rstr().modify(|_, w| w.$timXrst().clear_bit());
let mut timer = Timer { clocks, tim };
timer.start(timeout);
timer
}
/// Starts listening for an `event`
pub fn listen(&mut self, event: Event) {
match event {
Event::Update => self.tim.dier.write(|w| w.uie().set_bit()),
}
}
/// Stops listening for an `event`
pub fn unlisten(&mut self, event: Event) {
match event {
Event::Update => self.tim.dier.write(|w| w.uie().clear_bit()),
}
}
}
impl CountDown for Timer<$TIMX> {
type Time = Hertz;
fn start<T>(&mut self, timeout: T)
where
T: Into<Hertz>,
{
// pause
self.tim.cr1.modify(|_, w| w.cen().clear_bit());
let frequency = timeout.into().0;
let ticks = self.clocks.pclk1().0 * if self.clocks.ppre1() == 1 { 1 } else { 2 }
/ frequency;
let psc = u16((ticks - 1) / (1 << 16)).unwrap();
self.tim.psc.write(|w| w.psc().bits(psc));
let arr = u16(ticks / u32(psc + 1)).unwrap();
self.tim.arr.write(|w| unsafe { w.bits(u32(arr)) });
// Trigger an update event to load the prescaler value to the clock
self.tim.egr.write(|w| w.ug().set_bit());
// The above line raises an update event which will indicate
// that the timer is already finnished. Since this is not the case,
// it should be cleared
self.tim.sr.modify(|_, w| w.uif().clear_bit());
// start counter
self.tim.cr1.modify(|_, w| w.cen().set_bit());
}
fn wait(&mut self) -> nb::Result<(), Void> {
if self.tim.sr.read().uif().bit_is_clear() {
Err(nb::Error::WouldBlock)
} else {
self.tim.sr.modify(|_, w| w.uif().clear_bit());
Ok(())
}
}
}
impl Periodic for Timer<$TIMX> {}
)+
}
}
hal! {
TIM2: (tim2, tim2en, tim2rst),
TIM3: (tim3, tim3en, tim3rst),
TIM4: (tim4, tim4en, tim3rst),
}