Ricci-curvature applied to climate networks to study teleconnection patterns of ENSO diversity.
An intuition on network curvature:
git clone --recurse-submodules https://github.com/jakob-schloer/netcurvature.git
To reproduce our analysis described in the paper follow these steps: We recommend to create a new environment and install all required packages by running:
conda env create -f submodules/climnet/condaEnv.yml
conda activate climnetenv
pip install graphriccicurvature
pip install -e submodules/climnet
Download 2m temperature data from ERA5 and store the merged files in the data folder.
- Create the corresponding networks
python bin/t2m_create_net.py -data 'datapath' -s 'standard'
python bin/t2m_create_net.py -data 'datapath' -s 'Nino_EP'
python bin/t2m_create_net.py -data 'datapath' -s 'Nino_CP'
- Reproduce plots in the paper by running
python bin/paperplots.py -d 'datapath' -ep 'epNetPath' -cp 'cpNetPath' -normal 'normalNetPath'
The figures should look somehow similiar to the following:
The networks used for this plots are stored in 'outputs/t2m_1950-2020_nino_nets'.