-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrewriteSemplotFunctions.R
155 lines (153 loc) · 5.66 KB
/
rewriteSemplotFunctions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
semPlotModel_MxRAMModel <- function (object)
{
varNames <- object@manifestVars
factNames <- object@latentVars
Dirpaths <- which(t(object@matrices$A@free | object@matrices$A@values !=
0), arr.ind = TRUE)
DirpathsFixed <- !t(object@matrices$A@free)[Dirpaths]
DirpathsValues <- t(object@matrices$A@values)[Dirpaths]
DirpathsLabels <- t(object@matrices$A@labels)[Dirpaths]
Sympaths <- which(t(object@matrices$S@free | object@matrices$S@values !=
0) & upper.tri(object@matrices$S@values, diag = TRUE),
arr.ind = TRUE)
SympathsFixed <- !t(object@matrices$S@free)[Sympaths]
SympathsValues <- t(object@matrices$S@values)[Sympaths]
SympathsLabels <- t(object@matrices$A@labels)[Sympaths]
if (!is.null(object@matrices$M)) {
Means <- which(object@matrices$M@free | object@matrices$M@values !=
0)
MeansFixed <- !object@matrices$M@free[Means]
MeansValues <- object@matrices$M@values[Means]
MeansLabels <- object@matrices$M@labels[Means]
}
else {
Means <- numeric(0)
MeansFixed <- logical(0)
MeansValues <- numeric(0)
MeansLabels <- character(0)
}
if (!length(object@output) == 0) {
standObj <- standardizeRam(object, "model")
DirpathsValuesStd <- t(standObj@matrices$A@values)[Dirpaths]
SympathsValuesStd <- t(standObj@matrices$S@values)[Sympaths]
if (!is.null(standObj@matrices$M)) {
MeansValuesStd <- standObj@matrices$S@values[Means]
}
else {
MeansValuesStd <- numeric(0)
}
}
else {
DirpathsValuesStd <- rep(NA, nrow(Dirpaths))
SympathsValuesStd <- rep(NA, nrow(Sympaths))
MeansValuesStd <- rep(NA, length(Means))
}
Vars <- data.frame(name = c(varNames, factNames), manifest = c(varNames,
factNames) %in% varNames, exogenous = NA, stringsAsFactors = FALSE)
Pars <- data.frame(label = c(DirpathsLabels, SympathsLabels,
MeansLabels), lhs = c(Vars$name[c(Dirpaths[, 1], Sympaths[,
1])], rep("", length(Means))), edge = c(rep("->", nrow(Dirpaths)),
rep("<->", nrow(Sympaths)), rep("int", length(Means))),
rhs = Vars$name[c(Dirpaths[, 2], Sympaths[, 2], Means)],
est = c(DirpathsValues, SympathsValues, MeansValues),
std = c(DirpathsValuesStd, SympathsValuesStd, MeansValuesStd),
group = object@name, fixed = c(DirpathsFixed, SympathsFixed,
MeansFixed), par = 0, stringsAsFactors = FALSE)
Pars$par[is.na(Pars$label)] <- seq_len(sum(is.na(Pars$label)))
for (lbl in unique(Pars$label[!is.na(Pars$label)])) {
Pars$par[Pars$label == lbl] <- max(Pars$par) + 1
}
Pars$label[is.na(Pars$label)] <- ""
semModel <- new("semPlotModel")
semModel@Pars <- Pars
semModel@Vars <- Vars
semModel@Computed <- !length(object@output) == 0
semModel@Original <- list(object)
if (!is.null(object@data)) {
if (object@data@type == "cov") {
semModel@ObsCovs <- list(object@data@observed)
}
else if (object@data@type == "raw") {
semModel@ObsCovs <- list(cov(object@data@observed))
}
else {
semModel@ObsCovs <- list(NULL)
}
}
else {
semModel@ObsCovs <- list(NULL)
}
semModel@ImpCovs <- list(object$fitfunction$info$expCov)
return(semModel)
}
standardizeRam <- function (model, return = "parameters", Amat = NA, Smat = NA,
Mmat = NA)
{
if (!(return == "parameters" | return == "matrices" | return ==
"model"))
stop("Invalid 'return' parameter. What do you want from me?")
obj <- class(model$expectation)[1]
suppliedNames <- !is.na(Amat) & !is.na(Smat)
cA <- is.character(Amat)
cS <- is.character(Smat)
cM <- is.character(Mmat)
if (obj != "MxExpectationRAM" & (!cA))
stop("I need either MxExpectationRAM or the names of the A and S matrices.")
output <- model@output
if (is.null(output))
stop("Provided model has no objective function, and thus no output. I can only standardize models that have been run!")
if (length(output) < 1)
stop("Provided model has no output. I can only standardize models that have been run!")
if (cA) {
nA <- Amat
}
else {
nA <- model$expectation$A
}
if (cS) {
nS <- Smat
}
else {
nS <- model$expectation$S
}
if (cM) {
nM <- Mmat
}
else {
nM <- model$expectation$M
}
A <- model[[nA]]
S <- model[[nS]]
d <- dim(S@values)[1]
I <- diag(d)
IA <- solve(I - A@values)
expCov <- IA %*% S@values %*% t(IA)
invSDs <- 1/sqrt(diag(expCov))
names(invSDs) <- as.character(1:length(invSDs))
if (!is.null(dimnames(A@values))) {
names(invSDs) <- as.vector(dimnames(S@values)[[2]])
}
diag(I) <- invSDs
stdA <- I %*% A@values %*% solve(I)
stdS <- I %*% S@values %*% I
model[[nA]]@values[, ] <- stdA
model[[nS]]@values[, ] <- stdS
if (!is.na(nM)) {
model[[nM]]@values[, ] <- rep(0, length(invSDs))
}
if (return == "model")
return(model)
matrices <- list(model[[nA]], model[[nS]])
names(matrices) <- c("A", "S")
if (return == "matrices")
return(matrices)
p <- summary(model)$parameters
p <- p[(p[, 2] == nA) | (p[, 2] == nS), ]
rescale <- invSDs[p$row] * 1/invSDs[p$col]
rescaleS <- invSDs[p$row] * invSDs[p$col]
rescale[p$matrix == "S"] <- rescaleS[p$matrix == "S"]
p[, 5] <- p[, 5] * rescale
p[, 6] <- p[, 6] * rescale
names(p)[5:6] <- c("Std. Estimate", "Std.Std.Error")
return(p)
}