From 2623fee90e420b18c3c545e324ab85a13a5d4c2e Mon Sep 17 00:00:00 2001 From: ajnebro Date: Sat, 22 Jun 2024 10:29:28 +0200 Subject: [PATCH] Working on the documentation --- docs/index.html | 254 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 254 insertions(+) create mode 100644 docs/index.html diff --git a/docs/index.html b/docs/index.html new file mode 100644 index 00000000..2b0c6c24 --- /dev/null +++ b/docs/index.html @@ -0,0 +1,254 @@ + + + + + + + + + + + + + + + + jMetalPy: Python version of the jMetal framework — jMetalPy 1.7.0 documentation + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+
+ + + + + + +
+
+
+ + + +
+ +
+

jMetalPy: Python version of the jMetal framework

+
+

Warning

+

Documentation is work in progress!! Some information may be missing or incomplete.

+
+ + + + + + +

Target doc

v1.7.0

+
+

Content

+ +
+
+

Installation steps

+

Via pip:

+
$ pip install jmetalpy  # or "jmetalpy[distributed]"
+
+
+
+

Note

+

Alternatively, you can use one of these instead:

+
$ pip install "jmetalpy[core]"  # Install core components of the framework (equivalent to `pip install jmetalpy`)
+$ pip install "jmetalpy[docs]"  # Install requirements for building docs
+$ pip install "jmetalpy[distributed]"  # Install requirements for parallel/distributed computing
+$ pip install "jmetalpy[complete]"  # Install all dependencies
+
+
+
+

Via source code:

+
$ git clone https://github.com/jMetal/jMetalPy.git
+$ python setup.py install
+
+
+
+
+

Summary of features

+

The current release of jMetalPy (v1.5.3) contains the following components:

+
    +
  • Algorithms: local search, genetic algorithm, evolution strategy, simulated annealing, random search, NSGA-II, NSGA-III, SMPSO, OMOPSO, MOEA/D, MOEA/D-DRA, MOEA/D-IEpsilon, GDE3, SPEA2, HYPE, IBEA. Preference articulation-based algorithms (G-NSGA-II, G-GDE3, G-SPEA2, SMPSO/RP); Dynamic versions of NSGA-II, SMPSO, and GDE3.

  • +
  • Parallel computing based on Apache Spark and Dask.

  • +
  • Benchmark problems: ZDT1-6, DTLZ1-2, FDA, LZ09, LIR-CMOP, unconstrained (Kursawe, Fonseca, Schaffer, Viennet2), constrained (Srinivas, Tanaka).

  • +
  • Encodings: real, binary, permutations.

  • +
  • Operators: selection (binary tournament, ranking and crowding distance, random, nary random, best solution), crossover (single-point, SBX), mutation (bit-blip, polynomial, uniform, random).

  • +
  • Quality indicators: hypervolume, additive epsilon, GD, IGD.

  • +
  • Pareto front approximation plotting in real-time, static or interactive.

  • +
  • Experiment class for performing studies either alone or alongside jMetal.

  • +
  • Pairwise and multiple hypothesis testing for statistical analysis, including several frequentist and Bayesian testing methods, critical distance plots and posterior diagrams.

  • +
+
+
+

Cite us

+
@article{BENITEZHIDALGO2019100598,
+   title = "jMetalPy: A Python framework for multi-objective optimization with metaheuristics",
+   journal = "Swarm and Evolutionary Computation",
+   pages = "100598",
+   year = "2019",
+   issn = "2210-6502",
+   doi = "https://doi.org/10.1016/j.swevo.2019.100598",
+   url = "http://www.sciencedirect.com/science/article/pii/S2210650219301397",
+   author = "Antonio Benítez-Hidalgo and Antonio J. Nebro and José García-Nieto and Izaskun Oregi and Javier Del Ser",
+   keywords = "Multi-objective optimization, Metaheuristics, Software framework, Python, Statistical analysis, Visualization",
+}
+
+
+
+
+ + +
+ + +
+ +
+
+
+ + + + + + \ No newline at end of file