Skip to content

Latest commit

 

History

History
37 lines (26 loc) · 1.09 KB

README.md

File metadata and controls

37 lines (26 loc) · 1.09 KB

Elastic weight consolidation for better bias inoculation

Code for EACL2021 paper.

Download resources folder:

Download this Google Drive folder into your project as resources/

https://drive.google.com/drive/folders/15LxyLEDr9HSP5gmxBIlUU6bJKsFf5r_g?usp=sharing

FEVER

Train original model

allennlp train -f -s work/fever/bert/ configs/fever/cls_bert_base.jsonnet --include-package debias_finetuning

Fine-tune with symmetric data

allennlp fine-tune-ewc -s work/fever/ft_bert -m work/fever/bert/model.tar.gz --folds 5 --ewc 100000 -c configs/fever/finetune_symmetric_bert_base.jsonnet --include-package debias_finetuning

MultiNLI

Train original model

allennlp train -f -s work/multinli/bert configs/multinli/cls_esim.jsonnet --include-package debias_finetuning

Fine-tune with stress-test data

allennlp fine-tune-ewc -s work/multinli/ft_esim/ -m work/multinli/bert/model.tar.gz -c configs/multinli/finetune_stresstest_esim.jsonnet --include-package debias_finetuning --folds 5

The -o overrides can be used to pass in any of the stress test datasets.