-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgrad_explainer.py
82 lines (54 loc) · 2.3 KB
/
grad_explainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
import torch
from torch_geometric.nn import MessagePassing
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def execute_model_with_gradient(model, node, x, edge_index):
ypred = model(x, edge_index)
predicted_labels = ypred.argmax(dim=-1)
predicted_label = predicted_labels[node]
logit = torch.nn.functional.softmax((ypred[node, :]).squeeze(), dim=0)
logit = logit[predicted_label]
loss = -torch.log(logit)
loss.backward()
def grad_edge_explanation(model, node, x, edge_index):
model.zero_grad()
E = edge_index.size(1)
edge_mask = torch.nn.Parameter(torch.ones(E))
for module in model.modules():
if isinstance(module, MessagePassing):
module.__explain__ = True
module.__edge_mask__ = edge_mask
edge_mask.requires_grad = True
x.requires_grad = True
if edge_mask.grad is not None:
edge_mask.grad.zero_()
if x.grad is not None:
x.grad.zero_()
execute_model_with_gradient(model, node, x, edge_index)
adj_grad = edge_mask.grad
adj_grad = torch.abs(adj_grad)
masked_adj = adj_grad + adj_grad.t()
masked_adj = torch.sigmoid(masked_adj)
masked_adj = masked_adj.cpu().detach().numpy()
feature_mask = torch.abs(x.grad).cpu().detach().numpy()
return np.max(feature_mask, axis=0), masked_adj
def grad_node_explanation(model, node, x, edge_index):
model.zero_grad()
num_nodes, num_features = x.size()
node_grad = torch.nn.Parameter(torch.ones(num_nodes))
feature_grad = torch.nn.Parameter(torch.ones(num_features))
node_grad.requires_grad = True
feature_grad.requires_grad = True
mask = node_grad.unsqueeze(0).T.matmul(feature_grad.unsqueeze(0))
execute_model_with_gradient(model, node, mask*x, edge_index)
node_mask = torch.abs(node_grad.grad).cpu().detach().numpy()
feature_mask = torch.abs(feature_grad.grad).cpu().detach().numpy()
return feature_mask, node_mask
def gradinput_node_explanation(model, node, x, edge_index):
model.zero_grad()
x.requires_grad = True
if x.grad is not None:
x.grad.zero_()
execute_model_with_gradient(model, node, x, edge_index)
feature_mask = torch.abs(x.grad * x).cpu().detach().numpy()
return np.mean(feature_mask, axis=0), np.mean(feature_mask, axis=1)