forked from Sherry-SR/edgeDL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_config_case2D.yaml
executable file
·50 lines (50 loc) · 1.57 KB
/
test_config_case2D.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# path to the checkpoint file containing the model
model_path: /mnt/lustre/shenrui/project/edgeDL/checkpoints/pelvis/casenet2d/last_checkpoint_iter20000.pytorch
# path to the folder of the predictions
save_path: /mnt/lustre/shenrui/data/pelvis_predict_BCE20000
prediction_channel: null
# model configuration
model:
# model class, CASENet is based on ResNet
name: ResNet
# number of input channels to the model
in_channels: 1
# number of output classes
out_channels: 5
# set layers
layers: [3, 4, 23, 3]
# whether to apply the sigmoid function, set false for training, true for testing
final_sigmoid: True
# evaluation metric configuration
eval_metric:
name: PrecisionStats
# a target label that is ignored during metric evaluation
ignore_index: null
# number of points in PR curve
nthresh: 19
# specify the test datasets
loaders:
# test patch size given to the network (adapt to fit in your GPU mem)
test_patch: [null, null]
# test stride between patches (make sure the the patches overlap in order to get smoother prediction maps)
test_stride: [null, null]
# clip value within the range
clip_val: [-1000, 2000]
# how many subprocesses to use for data loading
num_workers: 8
# paths to the datasets
test_path:
- '/mnt/lustre/shenrui/data/pelvis_resampled/dataset_test.txt'
transformer:
test:
raw:
- name: ClipNormalize
- name: ToTensor
expand_dims: true
label:
- name: SegToEdge
out_channels: 5
radius: 1
- name: ToTensor
expand_dims: false
dtype: 'long'