Skip to content

Latest commit

 

History

History
94 lines (70 loc) · 2.6 KB

0200. 岛屿数量.md

File metadata and controls

94 lines (70 loc) · 2.6 KB
  • 标签:深度优先搜索、广度优先搜索、并查集、数组、矩阵
  • 难度:中等

题目链接

题目大意

描述:给定一个由字符 '1'(陆地)和字符 '0'(水)组成的的二维网格 $grid$

要求:计算网格中岛屿的数量。

说明

  • 岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
  • 此外,你可以假设该网格的四条边均被水包围。
  • $m == grid.length$
  • $n == grid[i].length$
  • $1 \le m, n \le 300$
  • $grid[i][j]$ 的值为 '0''1'

示例

  • 示例 1:
输入grid = [
  ["1","1","1","1","0"],
  ["1","1","0","1","0"],
  ["1","1","0","0","0"],
  ["0","0","0","0","0"]
]
输出1
  • 示例 2:
输入grid = [
  ["1","1","0","0","0"],
  ["1","1","0","0","0"],
  ["0","0","1","0","0"],
  ["0","0","0","1","1"]
]
输出3

解题思路

如果把上下左右相邻的字符 '1' 看做是 1 个连通块,这道题的目的就是求解一共有多少个连通块。

使用深度优先搜索或者广度优先搜索都可以。

思路 1:深度优先搜索

  1. 遍历 $grid$
  2. 对于每一个字符为 '1' 的元素,遍历其上下左右四个方向,并将该字符置为 '0',保证下次不会被重复遍历。
  3. 如果超出边界,则返回 $0$
  4. 对于 $(i, j)$ 位置的元素来说,递归遍历的位置就是 $(i - 1, j)$、$(i, j - 1)$、$(i + 1, j)$、$(i, j + 1)$ 四个方向。每次遍历到底,统计数记录一次。
  5. 最终统计出深度优先搜索的次数就是我们要求的岛屿数量。

思路 1:代码

class Solution:
    def dfs(self, grid, i, j):
        n = len(grid)
        m = len(grid[0])
        if i < 0 or i >= n or j < 0 or j >= m or grid[i][j] == '0':
            return 0
        grid[i][j] = '0'
        self.dfs(grid, i + 1, j)
        self.dfs(grid, i, j + 1)
        self.dfs(grid, i - 1, j)
        self.dfs(grid, i, j - 1)

    def numIslands(self, grid: List[List[str]]) -> int:
        count = 0
        for i in range(len(grid)):
            for j in range(len(grid[0])):
                if grid[i][j] == '1':
                    self.dfs(grid, i, j)
                    count += 1
        return count

思路 1:复杂度分析

  • 时间复杂度:$O(m \times n)$。其中 $m$$n$ 分别为行数和列数。
  • 空间复杂度:$O(m \times n)$。