-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_prompt.py
252 lines (227 loc) · 12.1 KB
/
trainer_prompt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch
import torch.nn as nn
import os
import numpy as np
from dataset import all_cats, create_normvio_prompt_dataset
import copy
import time
from sklearn.metrics import f1_score
from collections import OrderedDict
class Trainer:
def __init__(self, args):
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
if torch.cuda.device_count() > 0:
print(f"Let's use {torch.cuda.device_count()} GPUs!")
print(torch.cuda.get_device_properties(0))
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
print('Preparing datasets....')
from openprompt.plms import load_plm
plm, tokenizer, model_config, WrapperClass = load_plm(args.model_name.split('-')[0], args.model_name)
from openprompt.prompts import ManualTemplate
template = "In the {'meta':'subreddit'} subreddit, there is a rule: {'meta':'rule'}. "
template += "A conversation took place: "
for i in range(args.max_context_size):
template += f"Comment {i + 1}: {{'meta': 'comment{i}', 'shortenable': True}}\n"
if args.max_context_size > 0:
template += f"Comment {args.max_context_size + 1}: {{'meta': 'comment{args.max_context_size}', 'shortenable': True}}\n"
template += "Does the last comment violate the subreddit rule? (yes/no) {'mask'}"
else:
template += f"Comment: {{'meta': 'comment{args.max_context_size}', 'shortenable': True}}\n"
template += "Does the comment violate the subreddit rule? (yes/no) {'mask'}"
mytemplate = ManualTemplate(tokenizer=tokenizer, text=template)
data_train, features_train = create_normvio_prompt_dataset(phase='train',
sample_rate=args.sample_rate_train,
n_few_shot=args.n_few_shot,
cat=args.src_cat,
comm=args.src_comm,
max_context_size=args.max_context_size,
seed=args.seed)
data_val, features_val = create_normvio_prompt_dataset(phase='dev',
sample_rate=args.sample_rate_train,
n_few_shot=args.n_few_shot,
cat=args.src_cat,
comm=args.src_comm,
max_context_size=args.max_context_size,
seed=args.seed)
data_test, features_test = create_normvio_prompt_dataset(phase='test',
sample_rate=args.sample_rate_train,
n_few_shot=args.n_few_shot,
cat=args.tgt_cat,
comm=args.tgt_comm,
max_context_size=args.max_context_size,
seed=args.seed)
from openprompt import PromptDataLoader
train_loader = PromptDataLoader(dataset=data_train, template=mytemplate, tokenizer=tokenizer,
tokenizer_wrapper_class=WrapperClass, max_seq_length=args.max_n_tokens,
decoder_max_length=3, batch_size=args.batch_size, shuffle=True,
teacher_forcing=False,
predict_eos_token=False, truncate_method="tail")
val_loader = PromptDataLoader(dataset=data_val, template=mytemplate, tokenizer=tokenizer,
tokenizer_wrapper_class=WrapperClass, max_seq_length=args.max_n_tokens,
decoder_max_length=3, batch_size=args.batch_size, shuffle=False,
teacher_forcing=False,
predict_eos_token=False, truncate_method="tail")
test_loader = PromptDataLoader(dataset=data_test, template=mytemplate, tokenizer=tokenizer,
tokenizer_wrapper_class=WrapperClass, max_seq_length=args.max_n_tokens,
decoder_max_length=3, batch_size=args.batch_size, shuffle=False,
teacher_forcing=False,
predict_eos_token=False, truncate_method="tail")
print('Done\n')
print('Initializing model....')
from openprompt.prompts import ManualVerbalizer
myverbalizer = ManualVerbalizer(tokenizer, num_classes=2, label_words=["no", "yes"])
from openprompt import PromptForClassification
model = PromptForClassification(plm=plm, template=mytemplate, verbalizer=myverbalizer, freeze_plm=False)
n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'***********{n_params} trainable parameters!***********')
n_layers = 12
if args.n_finetune_layers > 0:
print('Freezing some layers....\n')
for param in plm.parameters():
param.requires_grad = False
for param in model.verbalizer.parameters():
param.requires_grad = True
for param in model.prompt_model.template.parameters():
param.requires_grad = True
if args.model_name == 'bert-base-uncased':
for param in plm.cls.parameters():
param.requires_grad = True
for i in range(n_layers - 1, n_layers - 1 - args.n_finetune_layers, -1):
for param in plm.bert.encoder.layer[i].parameters():
param.requires_grad = True
elif args.model_name == 'gpt2':
for param in plm.lm_head.parameters():
param.requires_grad = True
for param in plm.transformer.ln_f.parameters():
param.requires_grad = True
for i in range(n_layers - 1, n_layers - 1 - args.n_finetune_layers, -1):
for param in plm.transformer.h[i].parameters():
param.requires_grad = True
elif args.model_name == 't5-base':
for param in plm.lm_head.parameters():
param.requires_grad = True
for param in plm.decoder.final_layer_norm.parameters():
param.requires_grad = True
for i in range(n_layers - 1, n_layers - 1 - args.n_finetune_layers, -1):
for param in plm.decoder.block[i].parameters():
param.requires_grad = True
model.to(device)
print('Done\n')
from transformers import AdamW
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.lr)
criterion = nn.CrossEntropyLoss(ignore_index=-1)
prefix = f'ckps/{args.task}/{args.model_name}/{args.idx}/seed={args.seed}'
os.makedirs(prefix, exist_ok=True)
self.device = device
self.model = model
self.optimizer = optimizer
self.criterion = criterion
self.train_loader = train_loader
self.val_loader = val_loader
self.test_loader = test_loader
self.features_train = features_train
self.features_val = features_val
self.features_test = features_test
self.args = args
self.prefix = prefix
def train(self):
best_epoch = 0
best_epoch_f1 = 0
best_state_dict = copy.deepcopy(self.model.state_dict())
t = time.time()
for epoch in range(self.args.epochs):
print(f"{'*' * 20}Epoch: {epoch + 1}{'*' * 20}")
loss = self.train_epoch()
cat2f1 = self.eval()
f1 = cat2f1['macro']
if f1 > best_epoch_f1:
best_epoch = epoch
best_epoch_f1 = f1
best_state_dict = copy.deepcopy(self.model.state_dict())
print(f'Epoch {epoch + 1}\tTrain Loss: {loss:.3f}\tVal F1: {f1:.3f}\n'
f'Best Epoch: {best_epoch + 1}\tBest Epoch Val F1: {best_epoch_f1:.3f}\n\n'
)
for cat in cat2f1:
f1 = cat2f1[cat]
print(f'Val F1_{cat}: {f1:.3f}')
print()
if epoch - best_epoch >= 10:
break
elapsed_time = time.strftime('%H:%M:%S', time.gmtime(time.time() - t))
print(f'Elapsed Time: {elapsed_time}')
print('Saving the best checkpoint....')
torch.save(best_state_dict, f"{self.prefix}/model.pt")
self.model.load_state_dict(best_state_dict)
cat2f1 = self.eval(False)
for cat in cat2f1:
f1 = cat2f1[cat]
print(f'Test F1_{cat}: {f1:.3f}')
def train_epoch(self):
self.model.train()
epoch_loss = 0
t_epoch = time.time()
t = time.time()
for i, batch in enumerate(self.train_loader):
self.optimizer.zero_grad()
batch = batch.to(self.device)
batch_labels = batch['label']
logits = self.model(batch)
loss = self.criterion(logits, batch_labels)
loss.backward()
self.optimizer.step()
interval = max(len(self.train_loader) // 20, 1)
batch_time = time.strftime('%H:%M:%S', time.gmtime(time.time() - t))
if i % interval == 0 or i == len(self.train_loader) - 1:
print(f'Batch: {i + 1}/{len(self.train_loader)}\tloss: {loss.item():.3f}\tbatch_time: {batch_time}')
t = time.time()
epoch_loss += loss.item()
epoch_time = time.strftime('%H:%M:%S', time.gmtime(time.time() - t_epoch))
print(f"Epoch training time: {epoch_time}\n")
return epoch_loss / len(self.train_loader)
def eval(self, val=True):
y_pred = []
y_true = []
loader = self.val_loader if val else self.test_loader
features = self.features_val if val else self.features_test
print('Inferencing....')
self.model.eval()
with torch.no_grad():
for i, batch in enumerate(loader):
batch = batch.to(self.device)
batch_labels = batch['label']
logits = self.model(batch)
preds = logits.detach().to('cpu').argmax(dim=1).numpy()
y_pred.append(preds)
y_true.append(batch_labels.to('cpu').numpy())
print('Done\n')
y_pred = np.concatenate(y_pred, axis=0)
y_true = np.concatenate(y_true, axis=0)
cats = features
f1_micro = f1_score(y_true, y_pred)
cat2f1 = OrderedDict({'macro': 0, 'micro': f1_micro})
f1s = []
for cat in all_cats:
mask_cat = cats.apply(lambda x: cat in x).values
if mask_cat.sum() != 0:
f1_cat = f1_score(y_true[mask_cat], y_pred[mask_cat])
cat2f1[cat] = f1_cat
f1s.append(f1_cat)
cat = self.args.src_cat if val else self.args.tgt_cat
if cat == 'all':
average_f1 = sum(f1s) / len(f1s)
elif cat[0] != '~':
average_f1 = cat2f1[cat]
else:
average_f1 = sum(f1s) / len(f1s)
cat2f1['macro'] = average_f1
return cat2f1