-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils_eval.py
167 lines (131 loc) · 4.3 KB
/
utils_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import numpy as np
import pandas as pd
import scipy
def discretize(dg, col, s0, samples):
if col in dg.num_cols:
if dg.strategy == 'default':
column = pd.qcut(dg.df[col], dg.num_bins[dg.name], retbins=False, duplicates='drop')
cats = pd.Categorical(column).categories.to_list()
else:
cats = [pd.Interval(cat[0], cat[1], closed='right') for cat in dg.num_bins[col]]
orig = np.array([dg.map_interval(x, cats) for x in s0[col]])
cf = np.array([dg.map_interval(x, cats) for x in samples[col]])
else:
orig = s0[col]
cf = samples[col]
return orig, cf
def cont_prox(num_cols, num_samples, s0, samples):
# Lower is better
dist = 0
for col in num_cols:
dist += np.abs(s0[col] - samples[col]).sum()
return dist / (num_samples * len(num_cols))
def cat_prox(cat_cols, num_samples, s0, samples):
# Lower is better
dist = 0
for col in cat_cols:
dist += (s0[col] != samples[col]).sum()
return dist / (num_samples * len(cat_cols))
def sparsity(all_cols, num_samples, s0, samples):
dist = 0
for col in all_cols:
dist += (s0[col] != samples[col]).sum()
return dist / (num_samples * len(all_cols))
def validity(target_col, num_samples, s0, samples):
return (s0[target_col] != samples[target_col]).sum() / num_samples
def find_manifold_dist(x, knn):
# x: np.array
nearest_dist, nearest_points = knn.kneighbors(x, 1, return_distance=True)
quantity = np.mean(nearest_dist)
return quantity
def check_causal_relations(dg, s0, samples):
all_cols = dg.num_cols + dg.cat_cols
a, b = [], []
for i in dg.causal_cols:
causality = 0
col = all_cols[i]
orig, cf = discretize(dg, col, s0, samples)
num_samples = cf.shape[0]
causality += (cf >= orig).sum() / num_samples
a.append(causality)
a = np.mean(a) if len(a) > 0 else -1.0
return a
def diversity(dg, s0, samples, use_raw=False):
# Higher is better
new_samples = {}
# Discretize numeric columns, on all datasets for evaluation
df = dg.raw_df if use_raw else dg.df
for col in dg.num_cols:
_, new_samples[col] = discretize(dg, col, s0, samples)
for col in dg.cat_cols + [dg.target_col]:
new_samples[col] = samples[col]
cnt = 0
div = 0
sample_df = pd.DataFrame.from_records(new_samples)
sample_df = sample_df.loc[sample_df[dg.target_col] != s0[dg.target_col], :]
# remove invalid samples
num_samples = sample_df.shape[0]
for i in range(num_samples-1):
for j in range(i+1, num_samples):
div += scipy.spatial.distance.hamming(sample_df.iloc[i, ], sample_df.iloc[j, ] )
cnt += 1
if cnt == 0:
return 0
else:
return div / cnt
def evaluate(dg, num_samples, s0, samples, use_raw):
# co = cont_prox(dg.num_cols, num_samples, s0, samples)
# ca = cat_prox(dg.cat_cols, num_samples, s0, samples)
va = validity(dg.target_col, num_samples, s0, samples)
di = diversity(dg, s0, samples, use_raw)
sp = sparsity(dg.num_cols + dg.cat_cols, num_samples, s0, samples)
return sp, di, va
def parse_sample(dg, x):
'''
x : Torch tensor
'''
if isinstance(x, torch.Tensor):
arr = x.cpu().detach().numpy()
else:
arr = x
samples = {}
valid_cat = 0
_cols = dg.num_cols + dg.cat_cols
n = len(dg.num_cols)
for i in range(n):
value = arr[:, i]
col = dg.num_cols[i]
samples[col] = value
i = j = i + 1
info = dg.info['index']
while i < len(info):
start, end = info[i]
step = end - start
col = _cols[i]
arr_ = arr[:, j: j+step]
index = arr_.argmax(-1)
samples[col] = index
v1 = np.ones_like(arr_.sum(1))
valid_cat += (arr_.sum(1) == v1).mean()
j += step
i += 1
return samples, valid_cat / len(dg.cat_cols)
def get_clean_samples(sample_df, dg, cls, revert=False):
if dg.target_col in sample_df.columns:
arr = sample_df.astype('float').drop(columns=dg.target_col).to_numpy()
else:
arr = sample_df.astype('float').to_numpy()
samples, valid_cat = parse_sample(dg, arr)
if revert:
cf_df = pd.DataFrame.from_dict(samples)
arr = []
for col in cf_df.columns:
if col in dg.cat_cols:
a = dg.scaler[col][0].transform(cf_df[[col]])
else:
a = cf_df[[col]]
arr.append(a)
arr = np.concatenate(arr, axis=1)
samples[dg.target_col] = cls.predict(arr)
return samples, valid_cat