-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathfastsam_ui.py
387 lines (305 loc) · 15.2 KB
/
fastsam_ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
from ultralytics import YOLO
import gradio as gr
import torch
from utils.tools_gradio import fast_process
from utils.tools import format_results, box_prompt, point_prompt, text_prompt
from PIL import ImageDraw
import numpy as np
# Load the pre-trained model
model = YOLO('../../weights/fastsam/FastSAM-s.pt')
device = torch.device(
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
# Description
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
news = """ # 📖 News
🔥 2023/07/14: Add a "wider result" button in text mode (Thanks for [gaoxinge](https://github.com/CASIA-IVA-Lab/FastSAM/pull/95)).
🔥 2023/06/29: Support the text mode (Thanks for [gaoxinge](https://github.com/CASIA-IVA-Lab/FastSAM/pull/47)).
🔥 2023/06/26: Support the points mode. (Better and faster interaction will come soon!)
🔥 2023/06/24: Add the 'Advanced options" in Everything mode to get a more detailed adjustment.
"""
description_e = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). Welcome to give a star ⭐️ to it.
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
⌛️ It takes about 6~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.
🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)
😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant.
🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM)
"""
description_p = """ # 🎯 Instructions for points mode
This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). Welcome to give a star ⭐️ to it.
1. Upload an image or choose an example.
2. Choose the point label ('Add mask' means a positive point. 'Remove' Area means a negative point that is not segmented).
3. Add points one by one on the image.
4. Click the 'Segment with points prompt' button to get the segmentation results.
**5. If you get Error, click the 'Clear points' button and try again may help.**
"""
examples = [["../images/sa_8776.jpg"], ["../images/sa_414.jpg"], ["../images/sa_1309.jpg"], ["../images/sa_11025.jpg"],
["../images/sa_561.jpg"], ["../images/sa_192.jpg"], ["../images/sa_10039.jpg"], ["../images/sa_862.jpg"]]
default_example = examples[0]
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
def segment_everything(
input,
input_size=1024,
iou_threshold=0.7,
conf_threshold=0.25,
better_quality=False,
withContours=True,
use_retina=True,
text="",
wider=False,
mask_random_color=True,
):
input_size = int(input_size) # 确保 imgsz 是整数
# Thanks for the suggestion by hysts in HuggingFace.
w, h = input.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
input = input.resize((new_w, new_h))
results = model(input,
device=device,
retina_masks=True,
iou=iou_threshold,
conf=conf_threshold,
imgsz=input_size, )
if len(text) > 0:
results = format_results(results[0], 0)
annotations, _ = text_prompt(results, text, input, device=device, wider=wider)
annotations = np.array([annotations])
else:
annotations = results[0].masks.data
fig = fast_process(annotations=annotations,
image=input,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
bbox=None,
use_retina=use_retina,
withContours=withContours, )
return fig
def segment_with_points(
input,
input_size=1024,
iou_threshold=0.7,
conf_threshold=0.25,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=True,
):
global global_points
global global_point_label
input_size = int(input_size) # 确保 imgsz 是整数
# Thanks for the suggestion by hysts in HuggingFace.
w, h = input.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
input = input.resize((new_w, new_h))
scaled_points = [[int(x * scale) for x in point] for point in global_points]
results = model(input,
device=device,
retina_masks=True,
iou=iou_threshold,
conf=conf_threshold,
imgsz=input_size, )
results = format_results(results[0], 0)
annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w)
annotations = np.array([annotations])
fig = fast_process(annotations=annotations,
image=input,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
bbox=None,
use_retina=use_retina,
withContours=withContours, )
global_points = []
global_point_label = []
return fig, None
def get_points_with_draw(image, label, evt: gr.SelectData):
global global_points
global global_point_label
x, y = evt.index[0], evt.index[1]
point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
global_points.append([x, y])
global_point_label.append(1 if label == 'Add Mask' else 0)
print(x, y, label == 'Add Mask')
# 创建一个可以在图像上绘图的对象
draw = ImageDraw.Draw(image)
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
return image
cond_img_e = gr.Image(label="Input", value=default_example[0], type='pil')
cond_img_p = gr.Image(label="Input with points", value=default_example[0], type='pil')
cond_img_t = gr.Image(label="Input with text", value="../images/dogs.jpg", type='pil')
segm_img_e = gr.Image(label="Segmented Image", interactive=False, type='pil')
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type='pil')
segm_img_t = gr.Image(label="Segmented Image with text", interactive=False, type='pil')
global_points = []
global_point_label = []
input_size_slider = gr.components.Slider(minimum=512,
maximum=1024,
value=1024,
step=64,
label='Input_size',
info='Our model was trained on a size of 1024')
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown(title)
with gr.Column(scale=1):
# News
gr.Markdown(news)
with gr.Tab("Everything mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_e.render()
with gr.Column(scale=1):
segm_img_e.render()
# Submit & Clear
with gr.Row():
with gr.Column():
input_size_slider.render()
with gr.Row():
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
with gr.Column():
segment_btn_e = gr.Button("Segment Everything", variant='primary')
clear_btn_e = gr.Button("Clear", variant="secondary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(examples=examples,
inputs=[cond_img_e],
outputs=segm_img_e,
fn=segment_everything,
cache_examples=True,
examples_per_page=4)
with gr.Column():
with gr.Accordion("Advanced options", open=False):
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou',
info='iou threshold for filtering the annotations')
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf',
info='object confidence threshold')
with gr.Row():
mor_check = gr.Checkbox(value=False, label='better_visual_quality',
info='better quality using morphologyEx')
with gr.Column():
retina_check = gr.Checkbox(value=True, label='use_retina',
info='draw high-resolution segmentation masks')
# Description
gr.Markdown(description_e)
segment_btn_e.click(segment_everything,
inputs=[
cond_img_e,
input_size_slider,
iou_threshold,
conf_threshold,
mor_check,
contour_check,
retina_check,
],
outputs=segm_img_e)
with gr.Tab("Points mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_p.render()
with gr.Column(scale=1):
segm_img_p.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Row():
add_or_remove = gr.Radio(["Add Mask", "Remove Area"], value="Add Mask",
label="Point_label (foreground/background)")
with gr.Column():
segment_btn_p = gr.Button("Segment with points prompt", variant='primary')
clear_btn_p = gr.Button("Clear points", variant='secondary')
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(examples=examples,
inputs=[cond_img_p],
# outputs=segm_img_p,
# fn=segment_with_points,
# cache_examples=True,
examples_per_page=4)
with gr.Column():
# Description
gr.Markdown(description_p)
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
segment_btn_p.click(segment_with_points,
inputs=[cond_img_p],
outputs=[segm_img_p, cond_img_p])
with gr.Tab("Text mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_t.render()
with gr.Column(scale=1):
segm_img_t.render()
# Submit & Clear
with gr.Row():
with gr.Column():
input_size_slider_t = gr.components.Slider(minimum=512,
maximum=1024,
value=1024,
step=64,
label='Input_size',
info='Our model was trained on a size of 1024')
with gr.Row():
with gr.Column():
contour_check = gr.Checkbox(value=True, label='withContours',
info='draw the edges of the masks')
text_box = gr.Textbox(label="text prompt", value="a black dog")
with gr.Column():
segment_btn_t = gr.Button("Segment with text", variant='primary')
clear_btn_t = gr.Button("Clear", variant="secondary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(examples=[["../images/dogs.jpg"]] + examples,
inputs=[cond_img_e],
# outputs=segm_img_e,
# fn=segment_everything,
# cache_examples=True,
examples_per_page=4)
with gr.Column():
with gr.Accordion("Advanced options", open=False):
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou',
info='iou threshold for filtering the annotations')
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf',
info='object confidence threshold')
with gr.Row():
mor_check = gr.Checkbox(value=False, label='better_visual_quality',
info='better quality using morphologyEx')
retina_check = gr.Checkbox(value=True, label='use_retina',
info='draw high-resolution segmentation masks')
wider_check = gr.Checkbox(value=False, label='wider', info='wider result')
# Description
gr.Markdown(description_e)
segment_btn_t.click(segment_everything,
inputs=[
cond_img_t,
input_size_slider_t,
iou_threshold,
conf_threshold,
mor_check,
contour_check,
retina_check,
text_box,
wider_check,
],
outputs=segm_img_t)
def clear():
return None, None
def clear_text():
return None, None, None
clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e])
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
clear_btn_t.click(clear_text, outputs=[cond_img_p, segm_img_p, text_box])
demo.queue()
demo.launch()