From 84c24e5771a8bd76d6b27e92fc9d4cf8e0444307 Mon Sep 17 00:00:00 2001 From: Xinyu Yang Date: Mon, 8 Apr 2024 20:24:17 +0800 Subject: [PATCH] [Torch] Support Aten__And__ScalarOp (#3114) --- .../Dialect/Torch/IR/GeneratedTorchOps.td | 25 +++++++++++ lib/Conversion/TorchToStablehlo/Basic.cpp | 21 +++++++-- lib/Dialect/Torch/IR/TorchOps.cpp | 12 +++++ .../Transforms/AbstractInterpLibrary.cpp | 13 ++++++ projects/pt1/e2e_testing/xfail_sets.py | 3 ++ .../build_tools/abstract_interp_lib_gen.py | 12 +++++ .../build_tools/torch_ods_gen.py | 1 + .../test_suite/elementwise.py | 45 +++++++++++++++++++ 8 files changed, 128 insertions(+), 4 deletions(-) diff --git a/include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td b/include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td index 79c1fb3797be..7252be53c960 100644 --- a/include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td +++ b/include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td @@ -7556,6 +7556,31 @@ def Torch_Aten__And__TensorOp : Torch_Op<"aten.__and__.Tensor", [ }]; } +def Torch_Aten__And__ScalarOp : Torch_Op<"aten.__and__.Scalar", [ + AllowsTypeRefinement, + HasValueSemantics, + ReadOnly + ]> { + let summary = "Generated op for `aten::__and__.Scalar : (Tensor, Scalar) -> (Tensor)`"; + let arguments = (ins + AnyTorchTensorType:$self, + AnyTorchScalarType:$other + ); + let results = (outs + AnyTorchOptionalTensorType:$result + ); + let hasCustomAssemblyFormat = 1; + let extraClassDefinition = [{ + ParseResult Aten__And__ScalarOp::parse(OpAsmParser &parser, OperationState &result) { + return parseDefaultTorchOp(parser, result, 2, 1); + } + void Aten__And__ScalarOp::print(OpAsmPrinter &printer) { + printDefaultTorchOp(printer, *this, 2, 1); + } + }]; + let hasCanonicalizer = 1; +} + def Torch_Aten__Or__TensorOp : Torch_Op<"aten.__or__.Tensor", [ AllowsTypeRefinement, HasValueSemantics, diff --git a/lib/Conversion/TorchToStablehlo/Basic.cpp b/lib/Conversion/TorchToStablehlo/Basic.cpp index 1a2a6cfc32dc..3a6c5396b3f8 100644 --- a/lib/Conversion/TorchToStablehlo/Basic.cpp +++ b/lib/Conversion/TorchToStablehlo/Basic.cpp @@ -577,13 +577,24 @@ class ConvertAtenLogicalBinaryOp : public OpConversionPattern { LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { + Value lhs = adaptor.getSelf(); + Value rhs = adaptor.getOther(); + + RankedTensorType lhsTy = lhs.getType().dyn_cast(); + RankedTensorType rhsTy = rhs.getType().dyn_cast(); + + if (!lhsTy) + return op.emitError("lhs must be a ranked tensor type"); + TensorType outType = OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template cast(); - Value lhs = - hlo::promoteType(rewriter, op.getLoc(), adaptor.getSelf(), outType); - Value rhs = - hlo::promoteType(rewriter, op.getLoc(), adaptor.getOther(), outType); + Type outElemTy = outType.getElementType(); + lhs = hlo::promoteType(rewriter, op.getLoc(), lhs, outType); + if (!rhsTy) { + rhs = hlo::scalarToStablehloTensor(rewriter, op, rhs, outElemTy); + } + rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, outType); DenseI64ArrayAttr bcastDimensions; rewriter.replaceOpWithNewOp(op, outType, lhs, rhs, @@ -1861,6 +1872,8 @@ void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality( INSERT_BINARY_LOGICAL_PATTERN(AtenLogicalOrOp, chlo::BroadcastOrOp); INSERT_BINARY_LOGICAL_PATTERN(AtenLogicalAndOp, chlo::BroadcastAndOp); INSERT_BINARY_LOGICAL_PATTERN(AtenLogicalXorOp, chlo::BroadcastXorOp); + INSERT_BINARY_LOGICAL_PATTERN(AtenBitwiseAndScalarOp, chlo::BroadcastAndOp); + #undef INSERT_BINARY_LOGICAL_PATTERN #define INSERT_ATENOP_PATTERN(AtenOp) \ diff --git a/lib/Dialect/Torch/IR/TorchOps.cpp b/lib/Dialect/Torch/IR/TorchOps.cpp index 5802e9122263..dfd63c71317e 100644 --- a/lib/Dialect/Torch/IR/TorchOps.cpp +++ b/lib/Dialect/Torch/IR/TorchOps.cpp @@ -1872,6 +1872,18 @@ void Aten__Or__TensorOp::getCanonicalizationPatterns( }); } +//===----------------------------------------------------------------------===// +// Aten__And__ScalarOp +//===----------------------------------------------------------------------===// +void Aten__And__ScalarOp::getCanonicalizationPatterns( + RewritePatternSet &patterns, MLIRContext *context) { + patterns.add(+[](Aten__And__ScalarOp op, PatternRewriter &rewriter) { + rewriter.replaceOpWithNewOp( + op, op.getType(), op.getSelf(), op.getOther()); + return success(); + }); +} + //===----------------------------------------------------------------------===// // AtenScalarImplicitOp //===----------------------------------------------------------------------===// diff --git a/lib/Dialect/Torch/Transforms/AbstractInterpLibrary.cpp b/lib/Dialect/Torch/Transforms/AbstractInterpLibrary.cpp index 9903ec84117e..dde2c40d7053 100644 --- a/lib/Dialect/Torch/Transforms/AbstractInterpLibrary.cpp +++ b/lib/Dialect/Torch/Transforms/AbstractInterpLibrary.cpp @@ -6938,6 +6938,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() { " %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list) -> !torch.list\n" " return %0 : !torch.list\n" " }\n" +" func.func @\"__torch_mlir_shape_fn.aten.__and__.Scalar\"(%arg0: !torch.list, %arg1: !torch.float) -> !torch.list {\n" +" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list) -> !torch.list\n" +" return %0 : !torch.list\n" +" }\n" " func.func @\"__torch_mlir_shape_fn.aten.remainder.Tensor\"(%arg0: !torch.list, %arg1: !torch.list) -> !torch.list {\n" " %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list) -> !torch.list\n" " return %0 : !torch.list\n" @@ -10839,6 +10843,15 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() { " %4 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.promote_dtypes(%1, %3) : (!torch.list>, !torch.list) -> !torch.int\n" " return %4 : !torch.int\n" " }\n" +" func.func @\"__torch_mlir_dtype_fn.aten.__and__.Scalar\"(%arg0: !torch.tuple, %arg1: !torch.number) -> !torch.int {\n" +" %none = torch.constant.none\n" +" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple -> !torch.int, !torch.int\n" +" %1 = torch.prim.ListConstruct %0#0, %none : (!torch.int, !torch.none) -> !torch.list>\n" +" %2 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.get_dtype_of_scalar(%arg1) : (!torch.number) -> !torch.int\n" +" %3 = torch.prim.ListConstruct %0#1, %2 : (!torch.int, !torch.int) -> !torch.list\n" +" %4 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.promote_dtypes(%1, %3) : (!torch.list>, !torch.list) -> !torch.int\n" +" return %4 : !torch.int\n" +" }\n" " func.func @\"__torch_mlir_dtype_fn.aten.__and__.Tensor\"(%arg0: !torch.tuple, %arg1: !torch.tuple) -> !torch.int {\n" " %0:2 = torch.prim.TupleUnpack %arg1 : !torch.tuple -> !torch.int, !torch.int\n" " %1:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple -> !torch.int, !torch.int\n" diff --git a/projects/pt1/e2e_testing/xfail_sets.py b/projects/pt1/e2e_testing/xfail_sets.py index 769940217390..7ced3006af2b 100644 --- a/projects/pt1/e2e_testing/xfail_sets.py +++ b/projects/pt1/e2e_testing/xfail_sets.py @@ -500,6 +500,7 @@ "ElementwiseNeIntTensorStaticModule_basic", "ElementwiseNegModule_basic", "ElementwiseOrTensorStaticShapeModule_basic", + "ElementwiseAndScalarStaticShapeModule_basic", "ElementwisePowTensorBroadcastStaticModule_basic", "ElementwisePowTensorStaticModule_basic", "ElementwisePreluStaticModule_basic", @@ -1667,6 +1668,8 @@ "DivIntModule_basic", "ElementwiseAcoshIntModule_basic", "ElementwiseAcoshModule_basic", + "ElementwiseAndScalarModule_basic", + "ElementwiseAndScalarStaticShapeModule_basic", "ElementwiseAsinhIntModule_basic", "ElementwiseAsinhModule_basic", "ElementwiseAtanhIntModule_basic", diff --git a/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/abstract_interp_lib_gen.py b/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/abstract_interp_lib_gen.py index ff8e7cf47e52..628cda1ccf85 100644 --- a/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/abstract_interp_lib_gen.py +++ b/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/abstract_interp_lib_gen.py @@ -478,6 +478,9 @@ def aten〇div〇Scalar〡shape(self: List[int], other: float) -> List[int]: def aten〇remainder〇Scalar〡shape(self: List[int], other: float) -> List[int]: return upstream_shape_functions.unary(self) +def aten〇__and__〇Scalar〡shape(self: List[int], other: float) -> List[int]: + return upstream_shape_functions.unary(self) + def aten〇remainder〇Tensor〡shape(self: List[int], other: List[int]) -> List[int]: return upstream_shape_functions.unary(self) @@ -3002,6 +3005,15 @@ def aten〇rsub〇Scalar〡dtype(self_rank_dtype: Tuple[int, int], other: Union[ self_rank, self_dtype = self_rank_dtype return promote_dtypes([self_rank, None], [self_dtype, get_dtype_of_scalar(other)]) +@check_dtype_function( + _check_tensors_with_the_same_dtype(num_of_tensors=1, other=0.0) + + _check_tensors_with_the_same_dtype(num_of_tensors=1, other=0)) +def aten〇__and__〇Scalar〡dtype(self_rank_dtype: Tuple[int, int], other: Union[int, float, complex]) -> int: + self_rank, self_dtype = self_rank_dtype + ranks: List[Optional[int]] = [self_rank, None] + dtypes = [self_dtype, get_dtype_of_scalar(other)] + return promote_dtypes(ranks, dtypes) + @check_dtype_function(_check_two_tensor_op()) def aten〇__and__〇Tensor〡dtype(self_rank_dtype: Tuple[int, int], other_rank_dtype: Tuple[int, int]) -> int: other_rank, other_dtype = other_rank_dtype diff --git a/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/torch_ods_gen.py b/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/torch_ods_gen.py index b79277ee05b4..8fc6ac4eea48 100644 --- a/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/torch_ods_gen.py +++ b/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/torch_ods_gen.py @@ -535,6 +535,7 @@ def emit_with_mutating_variants(key, **kwargs): emit("aten::logsumexp : (Tensor, int[], bool) -> (Tensor)") emit("aten::mean.dim : (Tensor, int[]?, bool, int?) -> (Tensor)") emit("aten::__and__.Tensor : (Tensor, Tensor) -> (Tensor)") + emit("aten::__and__.Scalar : (Tensor, Scalar) -> (Tensor)", has_canonicalizer=True) emit("aten::__or__.Tensor : (Tensor, Tensor) -> (Tensor)", has_canonicalizer=True) emit("aten::_softmax : (Tensor, int, bool) -> (Tensor)") emit("aten::mean : (Tensor, int?) -> (Tensor)") diff --git a/projects/pt1/python/torch_mlir_e2e_test/test_suite/elementwise.py b/projects/pt1/python/torch_mlir_e2e_test/test_suite/elementwise.py index 26f4676f3608..a5b8520d1353 100644 --- a/projects/pt1/python/torch_mlir_e2e_test/test_suite/elementwise.py +++ b/projects/pt1/python/torch_mlir_e2e_test/test_suite/elementwise.py @@ -3070,6 +3070,51 @@ def ElementwiseOrTensorStaticShapeModule_basic(module, tu: TestUtils): # ============================================================================== +class ElementwiseAndscalarModule(torch.nn.Module): + + def __init__(self): + super().__init__() + + @export + @annotate_args([ + None, + ([-1, -1], torch.int32, True), + ]) + def forward(self, x): + return torch.ops.aten.__and__(x, 12) + + +@register_test_case(module_factory=lambda: ElementwiseAndscalarModule()) +def ElementwiseAndScalarModule_basic(module, tu: TestUtils): + module.forward( + tu.randint(3, 4, low=-10, high=10).to(torch.int32)) + + +# ============================================================================== + + +class ElementwiseAndScalarStaticShapeModule(torch.nn.Module): + + def __init__(self): + super().__init__() + + @export + @annotate_args([ + None, + ([3, 4], torch.int32, True) + ]) + def forward(self, x): + return torch.ops.aten.__and__(x, 12) + + +@register_test_case(module_factory=lambda: ElementwiseAndScalarStaticShapeModule()) +def ElementwiseAndScalarStaticShapeModule_basic(module, tu: TestUtils): + module.forward( + tu.randint(3, 4, low=-10, high=10).to(torch.int32)) + +# ============================================================================== + + class ElementwiseBitwiseXorModule(torch.nn.Module): def __init__(self):